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Macromolecular Crystallography

Notes are divided into 10 Chapters reflecting the usual size of this section of the Duke University Physi-
cal Biochemistry course.  (BCH291, SBB291)

Kinemages
Problem Sets    

Web Site:              http://kinemage.biochem.duke.edu/teaching/bch291

Other Web sites:  
http://molprobity.biochem.duke.edu/    protein & RNA   analysis, evaluation,...
http://www.rcsb.org/             Protein Data Bank                     get coordinates here
http://eds.bmc.uu.se/eds/     Electron Density Server             get maps here
http://xray.bmc.uu.se/gerard/embo2001/modval/index.html   model validation tutorial
http://www.ysbl.york.ac.uk/~cowtan/         Insightful crystallography exercises

Suggested Textbooks for reference or different presentation:

Alexander McPherson “Introduction to Macromolecular Crystallography”, 2nd ed.,  somewhat different 
organization than these notes, more information about crystallization and the initial stages of structure 
determination.  This is the nearest thing to a textbook I’ve found to accompany my notes and lectures.

Stout and Jensen, 2nd ed. “X-ray Structure Determination”   A very good general crystallography text.

Gale Rhodes 3rd ed. “Crystallography Made Crystal Clear”  Informal, less detail but more context.

David Blow “Outline of Crystallography for Biologists”  More detail than Rhodes, less math than 
Drenth, still not quite enough detail in deriving equations and developing the constructions needed by 
a practicing crystallographer.  However more complete description of the scope of information available 
from macromolecular crystallography. 

Jan Drenth  “Principles of Protein X-ray Crystallography”  More “mathematical”, vector and matrix 
notation...

McPherson for review when you start to actually do crystallography,
Rhodes for overall concepts, 
Blow for appreciating results, 
Stout & Jensen or Drenth to understand what you are actually doing in crystallography..

Overview
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2009: 
     This year we have 12 lecture-periods scheduled: (Overall exam at semester end includes the 
material of this section).  Besides allowance for slipage, this gives room for extra emphasis on relating 
quality of results with quality of data and processing. 

     Lecture notes continue to evolve: this year continuing the process of reducing font size and rearrang-
ing page layout so that written, class-time note-taking could be better done directly on these pages.

     Each page is marked with a topic and a chapter-page-number.  The sections designations are num-
bered to match the “Chapter” numbers.   Version control date added. 
     
     Note are distributed using three-hole punched paper so they can be accummulated, inserted, etc.

     Specific items listed under each “Chapter” might change or be rearranged as we go through them 
these next 4 weeks.

HOMEWORK is due at the next lecture time.
Late Homework accepted only when the homework problem is discussed with me.
Improved homework grade possible by discussing actual homework problem with me..

 Apology: 
     These are the notes from which I lecture. 
    These notes have accreted over the years, in fits and starts as Jane and I worked over how to present the concepts of crystal-
lography.   
     They started as just annotated drawings, and were handed out so that I didn’t have to make my chalk-board drawings 
quite as accurate, nor did students have to spend all the lecture time trying to reproduce the board drawings.   So these notes 
are indeed quite sketchy and lack much of the words of my actual lectures which I rearrange and make up as I talk each time.  
(Which is why these notes were not posted on the kinemage/teaching/ web site!)
     When these notes were started and for many years the macromolecules that were crystallized were proteins.  Thus much 
of the terminology (like that in many crystallography textbooks) is Protein centric,  e.g. FP for  native structure factor and FPH 
for native-with-Heavy-atom derivative.   
     Bryan Arendall has imported and improved the original hand drawings into electronic form, as well as added commentary 
and some reorganization to the notes.  If ever these notes become a textbook, then it would be “Arendall and Richardson”.  
Until that time, I own all the mistakes. -Dave Richardson

     This course will not teach you to use current machinery and computer programs to solve crystal 
structures;  it will, however, develop the concepts and equations you would need to build your own dif-
fractometers and write your own computer programs to solve crystal structures.   The approach is geo-
metrical rather than algebraic, but the equations derived are complete (but not necessarily in the form for 
an efficient computer program).

     For those who will be producers of crystallographically determined structures,  the complete do-
it-yourself approach is not, in general, advised, but in the rapidly developing world of crystallographic 
machinery and programs, it is valuable to understand the fundamental strengths and limitations of the 
experiments.

     Everyone these days is a consumer of crystallographically determined structures.  Evaluating the reli-
ability of structural details is critical to using them.  Knowing what goes into producing structural mod-
els gives an appreciation of the strengths and limitations of those models.
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     X-ray microscopy without a lens:  size and phase problems.

          Scale vs wavelength:                      myoglobin size vs 1.5Å wave   2NRL.kin

     Crystals
        Packing and possible symmetry in a crystal lattice

       Objects in a crystal                                                                            dancing-bears.kin
       5-fold protein xl contacts:                              P21212                       T0466_3dcx_rib.kin
       slides: 
01.NaseAsymXlsICEcurved.jpg
02.NaseAsymXlsPair.jpg
03.SerCatArgonne.jpg
04.SyrrxXLrobot.jpg
05.DukeXLcloseupKim.jpg

Problem Sets      “five-fold axes”
                           “Unit Cell - brick walk”
                           “Unit Cell - squirrels”

Chapter 1:     Introduction to the Technique of X-ray Crystallography

Chapter 2:    Phases and Transforms

     Waves and combining waves introduced...
        The 2 different kinds of “waves” that are needed to describe what is going on.
        The issue of combining waves.
        Waves of electron density through a crystal.
        A crystal of 1963beetles in a slice through a parking garage, 
             summing waves for (low resolution) image.

fftoys.html     featuring the beetle

     Transforms (alternative way of thinking)
     Statement of principles
     Simple shapes and their transforms
     Repeating patterns and their transforms
     Resolution:  Crystal and Duck
     Molecule and Crystal of Molecules
     DNA double helix: a high point of the 20th century

Problem Set           “Matching transforms: Crystal and Mickey Mouse”
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Chapter 3, sec 1:    Light Scattering

     Light:  different representations
     The Electromagnetic Spectrum   wavelength range of x-rays
     Light as a wave:  Interaction of light and matter
     Combination of Light waves (visualize, add point-by-point)
     Vector notation for waves  (sum phase vectors)
     Phase shift during interaction  
               (damped driven simple harmonic motion: ball on string)
     Light scattered by an individual oscillator

      Combining waves:  “interference” constructive (destructive) 

adding-waves.2.kin shown in KiNG

Problem Sets       “Adding Waves”    point-by-point by hand for once
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Chapter 3, sec 2:     Bragg Diffraction

Bragg’s Law and The Diffraction Vector

     How crystals affect the scattering of x-rays
     Sharpness of diffraction maxima
     Diffraction from a 2D grid of atoms (cones)
     Diffraction from a 3D array (lines = rays)
     Scattering and Diffraction
     Diffraction as a wave-front phenomenom
     The appearance of the Diffraction Pattern
     Diffraction as a probe for spacings within a crystal

Problem Sets      “Bragg’s Law limits” 
                           “3 planes --> 3 spots”
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Chapter 4, sec 1,    Diffraction Vector

     Crystal of molecules: side-by-side alpha helices
     Bragg Planes in 3D
     Reciprocal Lattice vs Bragg Planes
     Geometrical factors that affect measured intensities
     Structure factor of an individual atom
     Size of the spot
     Mosaic Blocks - perfectly-imperfect crystals

Kinemage     HelixBearHair.kin
Problem Sets      “Reciprocal Lattice & Diffraction from a Protein Crystal {Ewald}”

The Diffraction Vector

Chapter 4, sec 2,   Reciprocal Lattice

The Reciprocal Lattice and diffraction

Ewald Sphere: Crystal and Reciprocal Lattice

Chapter 4, sec 3,   Crystal diffraction

Physical properties of crystal diffraction



2009 Chapter 0,  Contents: pg 8

Chapter 6:     Patterson Maps 
     Equation in context of our earlier equations
     Patterson Map from 3 atoms
     
Problem Sets      “Patterson Map:  one peak, two atoms”
                           “Patterson Map:  atoms spaced along x axis”

Chapter 7:     Phasing Isomorphous 
     Isomorphous Derivative Method, approximations
     Two Heavy Atom Isomorphous Replacements
     ...as triangles (and as waves) to find the Phase
     Phase Probability Distributions and figure of merit
     (MIR method)
     
Problem Sets      “Phase Triangles: h=1, 2, 3”

Chapter 8:     Phasing Anomalous 
     Anomalous scattering by some electrons of an atom
     Friedel Pairs and Bijvoet Pairs
     Use of Anomalous scattering to (help) solve the phase problem
     Anomalous triangles, along with Isomorphous triangles  SIRAS
     (MIRAS)
     Multiple-wavelength Anomalous Dispersion: MAD
          Phase and Intensity near the adsorption edge
          Triangles (as SIRAS, Furey rather than Hendrickson)
     
Kinemage:   PhaseSIRAS.kin
Kinemage:  PhaseMADasSIRAS.kin
Problem Sets      “Method behind the MADness”
                  “Multi-wavelengths: Reciprocal Lattice, Ewald Spheres, von Laue diffraction”

     Scattering of x-rays by a molecule
     Scattering from 2 oscillators in a plane
     Scattering from a point in 3D space: the general equation
     Scattering from a molecule of multiple atoms
     Equations and the Fourier Transform relationship

Problem Sets      “Bragg Planes in a 2D lattice of tri-atomic molecules” 
                           “Helix spacing, Bragg Planes to Reciprocal Lattice points” 

Chapter 5:     Molecular Scatter
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Chapter 9:     Electron Density Maps, Resolution, and Refinement

     Electron Density as the Fourier Transform of Data
          Data as the Fourier Transform of Atoms
          experimental phases, model phases
          The Residual:    Rcryst  and  Rfree
     Refinement of the Structure Model
     Electron Density Maps
          Appearance and fitting of model to electron density
          As Sum of waves, 
          Examples at different resolutions
     
Kinemages     1HJ8_1.0A.kin,   1C9P_2.8A.kin     
                      Trypsin structures at 2 different resolutions
Maps                  1HJ8,  1C9P   2Fo-Fc from EDS
Problem Sets      “Resolution and model-to-map fitting”
                           “KiNG on MolProbity site: resolution in trypsin models and maps”

Chapter 10:     Quality Evaluation and Validation

     with respect to data
     with respect to stereochemistry and physics
     All Atom Contact Analysis and the MolProbity website

Equations, Charts, and Graphs
      The equations that were derived, what they mean:

     Equations Recapitulated
     Table: Diffraction as a function of resolution: B-factor, Atomic Scattering factor
     Graphs:  B-factor as a fuction of resolution

Kinemages     HowDotsWork.kin
                      1JIRon1S83_Arg66_supr.kin,    1JIR.pdb in MolProbity
Problem Sets      “Model quality and validation: MolProbity and KiNG”
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The goal in macromolecular crystallography is to obtain a three-dimensional picture of a 
molecule. The general method, and the source of some of the main difficulties involved in ap-
plying it, can be described by an analogy with an ordinary light microscope.

The light microscope uses a lens to recom-
bine the light scattered by the subject into 
an image. But it is necessary to use light of 
a wavelength not much greater than the size 
of the features we want to see in the images. 
for molecular structures this means using 
x-rays.

x-ray
source

image

no
lens

subject

computation

The characteristic x-ray emission of copper, 
which is often used for protein crystallography, 
has a wavelength of 1.54 Å. There is no known 
way of making a lens that will directly refract 
x-rays to make an image, so we are forced to 
measure the scattered x-rays at the place where 
the lens should have been, and use a compu-
tational method of recombining them into an 
image. This would not be too difficult a proce-
dure if it were not for two very serious techni-
cal problems that arise: the size problem and 
the phase problem.

The Technique of X-ray Crystallography

light
source

image

scatteredlight
lens

subject
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Match of wavelength to features we want to see:  
x-ray: 1 Å,  atom: 3Å, protein molecule: 50Å, (bonded atoms: 1.5Å apart)
Green light: 5000 Å, scale to 5meters = 5000 mm , scaled protein: 50mm = 5cm, (bonded atoms: 1.5 mm)

→ Draw 1 wavelength across both boards (of 147Nanaline),(Note change of phase along wave)
look at two 5 cm patchs:  (or two neighboring 3mm patches), myoglobin would be about 5cm in diameter.
even if they would scatter this light, could we tell we had two of them?

o

32 cycles of 1.5Å across the diameter of myoglobin:                                  → 2NRL.kin    2nrl.omap  in KiNG
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Macromolecular Crystallography, The Experiment

What is the information content of the experiment?
distance & direction

How does one get information out of the experiment and into the model?
measure, calculate, make image, interpret...

What can we know about the reliability of the model, both in general and in detail?
validation and feedback

Molecule Image
“Microscope”

light → Model Interpretation Science

General Issues

All atoms contribute to all Data, all Data contribute to all parts of the Map.

Map shows SUM of all conformations.

There are TWO kinds of waves:  
     real x-rays
     computed waves to construct the image

Specific Toe-catchers

Molecule
↓

crystal

MAP
Sum of 

conformations

Diffractometer

xrays → data

MODEL
best model

Interpretation
validation

Driving
Problem

Physical Transform      Computed Transform
                                     aplitudes from data
                                      need phases

Fit Model to Map
Refine vs data 
and stereochemistry

Cycles of fitting and refinement 
include rebuilding the map

starting phases
from experiment
or similar model
aka molecular replacement
The Phase Problem !
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The Size Problem   --->  CRYSTALS

A single molecule (even a large protein molecule) is so small that it does not by itself scatter 
a sufficient amount of x-rays in a reasonable time to accumulate enough information to form 
a detailed picture.  Also, x-rays of a wavelength short enough to resolve molecular details 
are energetic enough that the molecule would be destroyed long before its image could be 
produced.

The solution to this problem is to use a very 
great number of identical molecules packed 
together in a very orderly three dimensional 
array: a crystal.

This gives scattering power.

But one will need to understand how x-rays interact with crystals. This is the general subject 
of x-ray diffraction.

One will also need to grow suitable crystals (of dimensions on the order of a few tenths of a 
millimeter,) which is a very tricky art indeed.

CRYSTAL Packing

b=21 Å

a=
15

.5
 Å
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Unit Cell & possible symmetry in a crystal lattice

n-fold axes and unit cell translations.

2-fold axes:

3-fold axes (also 6-fold):
a

a

a

a

b

4-fold axes:

a

a

a

a

A unit cell fills all space by translations along its edges.  
Such a unit-cell translation relates a point in space to an identical point.  That 
is, the space surrounding one point looks exactly the same from any other 
point related by unit-cell translations.
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1:  Only unit cell translations, and there are no restrictions on the angles relating the three directions 
(axes) that describe the crystal.  
All three angles free leads to the term “triclinic” for this kind of crystal.

2-fold axes constrain 2 of the angles relating crystal axes to be 90°, but the third is not constrained.  
So this type of crystal is termed “monoclinic” for its one free angle.

Objects in a crystal

2-fold axes and unit cell translations.  
The 2-fold axes run through the whole crystal and 
relate not only the contents of the 
“asymmetric unit” with its pair within the unit cell, 
but also the asymmetric units throughout all 3-D 
space.  
 
    Note that this allows further “Non-Crystallo-
graphic Symmetry” within the asymmetric unit, (e.g. 
2 arms, 2legs, etc.) but these relationships are not 
constrained to be exact.

     Here, the whole “unit cell” (that box that fills all 
space by translations along three axes) is the “asym-
metric unit” (that volume whose contents are all the 
unique parts that exactly repeat through 3D space to 
make this crystal).

     Note that this allows further “Non-Crystallo-
graphic Symmetry” within the asymmetric unit, (e.g. 
2 arms, 2legs, etc.) but these relationships are not 
constrained to be exact.

     However, for a single bear per cell, each unique 
feature, e.g. the earring, is exactly related to all other 
identical features by unit-cell translations.

Additional 2-fold axes perpendicular to the first will contrain all angles to be 90°. 
Hence “orthorhombic”.  A 4-fold axis constrains 2 of the axes to be equal, thus “tetragonal”
A 3-fold at least constrains the three axes to be equal, with “rhombohedral” or at least “trigonal” shape.
A 6-fold leads to “hexagonal”.  Combinations of axes can lead to a “cubic” overall shape. 
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Squirrels

Lizards

MAGE make kinemage
Practice Docking 
tetramers extra
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The Phase Problem --> Two Kinds of Waves

The Crystallography experiment:  X-rays illuminate the crystal, diffract into discrete rays which leave 
the crystal.  The rays are captured (instead of entering a lens), and the image is produced by comput-
ing the recombination of those scattered rays (instead of recombining naturally when a lens focuses the 
rays).

This recombination of the scattered rays is computationally simulated using equations.

lens

real 
 s

pa
ce

re
al

  s
pa

ce

transform

transform

image

light

re
al

  s
pa

ce

transform

x-rays

no
lens for
x-rays ?

reciprocal
space

real light

real 

one real physical process

real light rays combine

real 

combine standing waves to build up a density-like image

Da
ta 

co
lle

cte
d h

er
e

depict as standing waves of integral wavelengths across

the units of the crystal.  Waves of more cycles the further 

the data was collected from the center line.
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The concept of building up the image (of the molecule(s) in the unit cell) is to first uniformly fill the box 
with average electron density, then one-by-one add in standing waves where density is either added or 
subtracted according to the position and height of each wave.   The VW Beetle figure shows starting this 
process using an example suggested in “Introduction to Macromolecular Crystallography” by Alexander 
McPherson, who also once had a ‘63 beetle.  (His was yellow, mine was red.)
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→ → see fftoys on web site
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The Phase Problem restated

The only devices available to measure radiation respond only to the energy and not to the 
relative phases of the x-rays.

In a microscope every point on the lens receives light from every point on the subject, and 
the lens combines the light so that every point on the image receives light from every point 
on the lens. The physical combination of all these light rays depends on each ray’s magnitude 
and phase..

In the x-ray case, we can measure the intensity of each scattered ray at the place where the lens would 
have been.  Intensity = energy = (amplitude)2.   (The intensity of an x-ray is just its number of photons 
per unit time.)   

 I = F2
in standard crystallographic notation. But we also must know the relative phases of those rays in order 
to compute what the image should look like, and unfortunately film, scintillation tubes, area detectors, 
CCD’s, etc. do not record anything about the relative phases of the various rays.   (That is, there is no way 
to tell when the crest of a wave passes, and for wavelengths of about 1Å going past at the speed of light 
in a machine made of real materials at room temperature that would be a real trick indeed!)  The only 
way to get relative phases is to use interference effects with a reference wave, and that is exactly what one 
does!

subject

microscope:

lens image

lens

real 
 s

pa
ce

re
al

  s
pa

ce

transform

transform

image

light re
al

  s
pa

ce

transform

x-rays

no
lens for
x-rays ?

reciprocal
space

To summarize the phase problem:  
We need to know the phases of the scattered x-rays in order to perform the computation step to get the 
image, but there is no way of measuring the phases directly.  The solution to this problem is the main 
work of crystallography.

DATA: what can be measured and what is missing...
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Two kinds of waves, one kind of equation: 

(Amplitude factor) • (Phase factor)       the general equation of a wave   

two varieties:

1)  | Fhkℓ | • eiφhkℓ     the expression for a real x-ray, with a real, experimentally fixed, wavelength.

     A resultant diffracted x-ray wave from the crystal is the sum of x-ray waves scattered from each and 
every atom in that crystal in a particular direction.  Each resultant wave, indexed as h,k,l , travels out of 
the crystal in that particular direction, so we will need to learn how to combine parallel x-ray waves to 
form a resultant wave.

2)  (amplitude factor)• e-i 2π( hx + ky + ℓz ) some other kind of wave, with wavelengths that turn 
out to be integral fractions of the dimensions of the unit cell.

     The electron density in a model of the crystal is the sum of these second kind of waves.  Not only are 
the wavelengths of these density waves different from each other, each wave is going in its own particular 
direction.   The wavelengths are integral fractions of unit cell dimensions (i.e. 1,2,3,... complete cycles 
within the bounds of the unit cell), thus they are standing waves.  So we will need to learn how to com-
bine standing waves in a box (the unit cell) to build up a density-like image.

     Representing waves, the phase clock (with radius = amplitude):

φ factor (eiφ): exponential form convenient to talk about;  eiφ = cos(φ) + i sin(φ)
cos() & sin() form (real and imaginary components) sometimes more convenient for computation.

im
ag

in
ar

y

real axis
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Transforms:
Transform of a set of planes is a row of points.

Transform of a lattice is a lattice.

Transform of a single object is a continuous distribution.

Crystallography:
     A convolution is a thing repeated by the rule of another thing.  
          e.g.  a crystal of molecules is the molecule repeated at all points of the crystal lattice.

    Transform of a convolution of two functions is the product of their individual transforms.

     Transform of a lattice populated by objects is the transform of the object 
     sampled at the points of the transformed lattice.

 Getting it on the blackboard or on “film”
     Transform of a projection of a 3D object is a planar section through the 3D transform of the object. 
     (If stay in plane for transform: third dimension position of features of the object don’t matter.)

Transforms for Dummies:
     Transform of  Short and Fat is Tall and Thin. 

All these are reversible.→

→

→

→

→

→

→

→

→
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this version from: Alexander McPherson “Introduction to Macromolecular Crystallography”
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Light

There is a particular model for light and matter which allows a consistent explanation of a 
very large part of the subjects which can be included under the general term “Spectroscopy”.

3 different representations
Wave  of wavelength, λ, each wavetrain
perform as we wish) 

Ray  direction of wave propogation, or direction of a stream of photons

λ

E d

(broad and long enough to 

Particle  specific quantum of energy  ∝  1/λ,  a photon = 1 quantum, a chunk of a 
wavetrain (broad and long enough to perform as we wish)

Light has both electric and magnetic properties, e.g. electromagnetic wave. One can almost 
always ignore the magnetic component and still adequately explain experimental phenomena.

Light interacts with matter: driving wave interacts with an oscillator.
Oscillator must involve an oscillating dipole, this could be an induced dipole in a polarizable 
object. So we are getting a measure of polarizability of a medium = molecules.

Energy can be transfered from (or to) this oscillator, for this introduction we will often ignore 
most processes except re-radiation of light. (i.e. we can creep up to an absorption band, but 
avoid actual absorption). Absorption is just the loss of energy from the oscillator before it re-
radiates. Absorption thus can be thought of as energy lost in the process of getting the oscil-
lator started and keeping it going.

Oscillator (oscillating dipole) can radiate energy (light)
So we must consider certain points:
1) Must investigate properties of original interaction
2) Must know character of re-emitted light: is it different from original wave? If so, how?
3) Must investigate how light waves interact with each other since we have opened the 

possibility of various light waves: e.g. original wave and emitted waves from various 
oscillators.

Avoid quantum mechanics: except note that any system, including our oscillators, can ex-
ist in only certain energy levels; so energy is handled only in discrete chunks which will be 
important occasionally to consider. But, the picture of a driving wave and a simple oscilla-
tor does, in fact, explain much of the observed phenomena!
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Light As A Wave

Quantum mechanics has its own way of getting broad absorption bands.
Identify the “oscillators” and we have the field of Absorption Spectroscopy.

Interaction of light and matter

Points to note:

1. Oscillator acts as a radiation source: radiated wave is in phase with the oscil-
lator.

2. The energy that can be pumped into the system, and thus the amount reradi-
ated increases as ω → ω0

3. For visible light ω < ω0, so oscillator and emitted wave in phase (0°) with the 
driving wave.  
For x-rays ω > ω0 for most electrons in atoms, so oscillator and resulting 
scattered wave are 180° out of phase with the driving wave.  Since one is usu-
ally concerned with the scattered wave, this is often defined so that the scat-
tered wave is at 0° and the driving wave at 180°.

4. Usual to treat phase of actual scattered light as having a usual component at 
0° and an anomalous component with 90° phase difference (lag).   For x-rays 
with scattered wave redefined to be 0° this is 90°phase advance, see later for a 
way to draw this).

→ →  Example: bound “electron” and driving “wave”

ω0ω < ω0 ω > ω0

180°

90°

0°

absorption

wavelength = λ
frequency = ν = c/λ
frequency = ω  = 2πν 
energy = hν = hc/λ

Phase lag of an oscillator, scattered wave always in phase with oscillator:

Analogy: Damped Driven Simple Harmonic Motion
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Waves A and B are 
exactly in phase with 
one another, and they 
combine constructively 
to give a wave of twice 
their amplitude.
Waves B and C are ex-
actly out of phase, and 
they cancel completely, 
combining to give a 
wave of zero amplitude.

Waves C and D are somewhat out of phase, and they combine to give a wave with an intermedi-
ate phase and less than twice their original amplitude.

Combination of  waves
x-ray
light

A + B B + C C + D

constructive destructive instructive

λ

A B C D

F = amplitude

φ = relative
phase}

Scattering  \'skad-er-  n\ : 
Electrons in the path of an x-ray wave are set into forced vibrations by the periodically changing 
electric field of the x-ray wave passing by. These oscillating electrons are themselves sources of x-ray 
waves. This forced oscillation is of the same frequency as the incident x-ray wave, and the emitted 
x-ray waves are thus of this same frequency. By this interaction the electrons are said to scatter the 
original x-ray wave.

e

Diffraction  \d   -'frak-kshen\: 
Cooperative combination of scattered waves. This can occur if the scattering points are arranged in 
space in some regularly repeating manner. In certain directions with respect to the incident wave 
and the array of the scatterers, the scattered waves will combine constructively. This can be used to 
increase the amount of scattered radiation to a point where meaningful measurements can be made. 
This application is used in crystallography; for, in our case, the study of globular proteins. Conversely, 
the existence of a diffraction pattern and its characteristics can be used to detect and deduce some-
thing about a repeating structure. This aspect is exploited in the case of fibers, fibrous structures, and 
other extended polymers.

ee•
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Vector notation for waves
The length of the vector represents the amplitude of the wave, and the direction of the vector 
represents the phase of the wave.

The construction of adding the two vectors head to tail gives the correct amplitude and phase for 
the combined wave, as above.  These are just vectors in the complex plane and can be written as:  

λ

A B C D

F = amplitude

 φ = relative
phase}

 

φB = 0°
     = 0  

φC = 180°
      =  π    

φA = 0°
     = 0  

= 360°
= 2π    

φD = 270°
   3π  

2
=

reference
arbitrarily pick
instant when φA=0

FA FB
FC FD

=
4

2π3

A + B B + C C + D

FC
FD FC+D φC+D= 225°

φC+D

φA+B = 0°

FC

FB
FB+C = 0

FBFA

|FC+D| x φfactorC+D =
|FC| x φfactorC + |FD|x φfactorD

|FC+D|eiφC+D = FC+D = |FC|eiφC + |FD|eiφD

φ factor (eiφ): exponential form convenient to talk about;  eiφ = cos(φ) + i sin(φ)
cos() & sin() form (real and imaginary components) sometimes more convenient for computation.

im
ag

in
ar

y

real axis

modified
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Phase shift

Phase lag of an oscillator, scattered wave always in phase with oscillator:

Refractive index is a measure of interaction:

In any real situation there may be many types of oscillators in the medium interact-
ing with the light but perhaps only one type near enough to resonance to have a sig-
nificant anomalous scattering component. Also, in common situations almost all of 
the effective oscillators will have a resonance frequency either greater than the light 
frequency, as is the case for visible light; or much smaller, as is the case for x-rays. Any 
odd oscillator which happens to be far on the other side of resonance will make its 
unique and minor contribution 180° out of phase with the bulk of the scattered radi-
tion and thus very slightly diminish the scattered intensity.

anomalous part now 90° phase
advance with respect to usual

usual  180° lag
anomalous

usual

90° lag
anomalous

90° lag

usual region usual region

anomalous
region

phase vectors of 
actual scattered wave

1
0

η

Consider wave as sum of 2 components Redefine usual scatter to be at 0°
i.e. rotate phase diagram 180°:

anomalous
usual

ω0ω < ω0 ω > ω0

180°
90°
0°

η is a measure of the interaction of light with matter: interaction affects relative phase of 
the oscillator with respect to the driving wave and a probability of feeding energy into 
the oscillator. The more energy in the oscillator, the more can be lost to other processes 
like absorption.
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Representation of Light Waves

Plane polarized light:  the simplest case

y

x

zwave

ray
(with

electric
vector)

direction of
propagation

i.e. in plane of paper

x

y iy

y

x,y real plane y complex plane

phase vector
φ  = 0°

electric field vector
in y direction

convention: 
z-axis coming toward viewer;
right-handed coordinates

y

x

zwave

ray

i.e. ⊥ to plane of paper

x

y ix

x

x,y real plane x complex plane

phase vector
φ  = 0°

electric field vector
in x direction
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Unpolarized Light

each component, e.g.

can be treated as composed of x and y
components in phase with each other: 

in all x,y directions;  

Thus can treat unpolarized light as the resultant of two plane polarized rays in phase. 
Any arbitrary photon in an unpolarized light ray can be broken into two components, 
and a great number of photons will then average out to give equal intensities in the two 
directions of polarized light chosen. 

Electric field vectors 

or

The components add directly, 

only if φ angle same; 
i.e. can thus define  
φy =  φx = 0 :

Thus,

y

x

y

x
+ =

ix

x

iy

y

complex planes

phase vectors
φy =  φx = 0

ix

x

iy

y

y

x

zwave

ray

x

y
real plane

electric field vectors

  
plot the two re

al 
ax

es
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Scattering, point particle 

unpolarized light -- individual oscillator

Straight through:
Perhaps a phase shift with respect to the original wave but 
otherwise no effect.
As seen from an angle, i.e. those photons scattered in a par-
ticular direction.
For example: direction of scattering in the plane of the paper:

F↕scattered is a measure of the projection of the dipole motion ⊥ to the direction of scatter.

The state of polarization and total intensity, I = F2, will vary as a function of θ.   In this simple 
case at θ = 90°, the ray is completely polarized.

F•scattered = F•original

F↕scattered = F↕original sin θ1
 = F↕original cos θ

Ioriginal = F2original ;   Iscattered = (F2original) x (sin2 θ1)

〉

〉

oscillator

θ1

θ1

θ
θ

direction of 
scatter

Later we will find that we can describe diffraction as a “reflection” from a plane (plane of os-
cillators) and see that this simple 2D diagram works as a projection to explain the general case 
for crystals. 
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This describes Intensity in any one direction = solid angle

Field strength = Amplitude per unit area (on a sphere at distance r) decreases as 1/r

Intensity per unit area decreases as  1/r²

This is important since measuring scatter from isolated objects the 1/r term is needed to 
match observed scatter at the measuring device.  (Note that for scattering from a crystal the 
allowed direction of scatter is limited and the measuring device can capture all the light scat-
tered in a particular direction, so there is not a fall-off of intensity just due to radial spread.)
Now we have some of the geometrical terms in the equation for light scattering from  
particles whose diameter is << λ ; i.e., where we can treat the particle as a single oscillator.    
In practice that diameter is :  d <  λ/20 

Scattering, point particle

Small Angle X-ray Scattering (SAXS). Solution scattering gets especially interesting when the wave-
length of the light is of the same length as features within the tumbling molecule, i.e. just the same 
relations that make crystal scattering really useful for detailed structure determination.   In addition to 
the Intensity equations above, must be added intensity scattered from features within the molecules aver-
aged by tumbling.  Rather than building a model into the image obtained from crystallography, the best 
that can be done is to propose shapes for the molecule and see if the data is consistent with what would 
be observed from such shapes tumbling in solution.  Of course, if one already knows a great deal about 
the possible structures that a particular molecule might have, like opening/closing between subunits, or 
donuts around DNA, then the models can be quite detailed.  Later, we will derive the general scattering 
equation - though the crystallographer does not have to describe the tumble averaging. 

For scattering from discrete objects tumbling in solution we would need to consider the general 
case of scattering in all directions.

Example: general direction of scatter 

Scattering of Io unpolarized = scattering from  ½Io(x) + ½Io(y) components, each identical 
except one has Intensity  ∝  ½Io sin2 θ1 ;  the other has Intensity  ∝ ½Io sin2 θ2

 Itotal scattered =  Ix + Iy ∝ ½ Io ( sin2θ1 + sin2θ2 )
 Is  =  Ix + Iy ∝ ½ Io ( 1 + cos2θ )

θ1
θ2

θ1θ2
θ

x

y

x componenty component
x

y

z

unpolarized light -- individual oscillator
(Digression from crystallography)

General Case: single particles tumbling in solution



2009 Chapter 3,sec 2,  Bragg Diffraction: pg 1
Bragg’s Law --
How Crystals Affect the Scattering of X-Rays

Now we consider the result of taking our scattering unit (an atom, or a molecule) and repeating it regu-
larly in space.  We must use our methods of combining waves to appreciate how the scattered light from 
multiple points combines to form a resultant wave.  (Refer to the earlier section: “Vector Notation for 
Waves”.)  A wave front can be considered to be made up of component individual rays.  (Later, there is a 
diagram that shows how diffraction occurs when a wave front encounters an array of scatterers.)

Diffraction from a row of molecules

If θ1 =  θ2, then path difference 
is zero.

Zero order diffraction 
(zero path length difference)

 is independent of d.

If dcos(θ1) - dcos(θ2) = nλ , then 
scattered rays are in phase.

Higher order diffraction
(finite path length difference)

 is dependent on d.
Note that these angle relationships hold all around the cone; thus diffraction from a row of atoms gives 
cones of scattered x-rays.

The following is true and useful for all light (and electrons (EM) and neutrons).  But, the development 
we will take will direct us toward 3-dimensional crystal diffraction of x-rays with only passing comments 
about fiber diffraction.

t
θ1

θ2

1

2

12
x-rays

path 1 path 2 = t cos θ2

"forward
  scatter"

cones of
diffraction

12
x-rays

t
θ1

θ2

2

1

path 2 path 1 = t cos θ1

The incoming ray is in phase with itself, and in general the diffracted ray will be in phase with itself if all of the component 
rays’ travel paths differ in length only by an integral number of wavelengths.
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Sharpness of Diffraction Maxima

So far we have only considered conditions for diffraction maxima (where scattered rays are exactly 
in phase.)  For a row of 2 or 3 atoms, if the path lengths are just slightly wrong then the intensity 
of the diffracted beam is just slightly less than maximum, so the distribution of scattered x-rays is 
rather smooth. 

But consider the case of zero order diffraction from a very long row of atoms:   
If θ1, is just slightly smaller than  θ2, then path 2 is shorter than path 1 by ∆ = t cos(θ1) - t cos(θ2). 
Likewise, path 3 is shorter than path 1 by  2∆ = 2t cos(θ1) - 2t cos(θ2),  and  
path 4 by  3∆ = 3t cos(θ1) - 3t cos(θ2), and so on.   
If ray 2 was only 1° out of phase with ray 1, then ray 181 will be 180° out of phase with ray 1;  
furthermore, ray 182 will be 180° out of phase with ray 2, ..., and they will all cancel each other out.

For a real crystal with 104 to 106 atoms in a 
row, cancellation is complete for even slightly 
incorrect angles, giving extremely sharp dif-
fraction maxima (spots.)  In fact, the spots on 
an x-ray photograph are somewhat smeared 
out because of the size of the x-ray source, 
the size of the crystal, the mosaic character of 
the crystal, and the spectral dispersion of the 
x-rays; but in spite of all that, the spots are still 
quite small and sharp.

134

path 1 = 3t cos(θ1)

path 4 = 3t cos(θ2)

θ1

θ2

t

2

1

3

4

2
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Diffraction from a Two-Dimensional Grid of Atoms

Path difference between ray 1 and ray 2 is 2δ.  If 2δ 
= nλ, then rays will be in phase. 

δ = d sin(θ), so 

Where d is the distance between repeating units 
measured perpendicular to the A-A rows (planes in 
3D), and d/n is the distance between Bragg Planes 
which cut that d into n equal intervals.

This can also be thought of as the intersection 
of a zero-order diffraction cone from row A-A 
with a higher-order diffraction cone from row 
B-B. (This generalizes to the third dimension.) 
Intersections of cones give straight lines, so 
that diffraction from a grid is in discrete rays

Bragg’s Law 

λ = 2(d/n) sin(θ)

θ

θ

δ

δ

d 1st order
cone

δ

δ

B

B

A

A

d
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Consider the case where the grid of atoms is non-orthogonal:

Distances ε are all equal, and the path difference between rays 1 and 2 is still 2δ = 2d sin θ

In the general case, therefore, the d in Bragg’s Law is the perpendicular 
distance between planes, not the distance between atoms. 

12

1

2

d

d

θ

δ ε

θ

θ

ε

ε

δ

Path 1 = ε

Path 2 = 2δ + ε

     Thus for diffraction in a particular direction (defined by the normal to the “Bragg planes”), it is the 
projected distance between scattering atoms along that direction, not the raw distance between atoms, 
that determines the relative phases.

     For instance, the diffraction pattern from the so-called “alpha” form of some proteins implied 
regular spacing between residues as well as a helical arrangement.  However, polypeptide models that 
arranged the atoms directly in line along the helix axis failed to explain the details of the diffraction 
pattern.   Linus Pauling proposed a compact model that did not have the atoms in line along the axial 
direction and he pointed out that this would still diffract!  With this in mind, Max Perutz showed that 
his hemoglobin crystals contained a-helices -- which in turn comfirmed Pauling’s model.  (But they 
did not then have enough information to know whether it was right-handed or left-handed!) 
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Diffraction from 3-D array
If the x-rays are in the plane of the paper in the left-hand diagram on page Bragg-3, then the 
condition can be generalized to three dimensions by visualizing a set of identical diagrams 
parallel to the paper above and below. Rays scattered from all the atoms in any one diagram 
have been shown to be in phase, and since the path lengths are identical for any two cor-
responding atoms on different diagrams, all the rays from the entire three-dimensional array 
are in phase when Bragg’s Law is satisfied.

Restricted ray from single Bragg plane: 
direction limited and  θi= θr , i.e mirror 
reflection;  then deeper layers restrict θ.

Bragg planes are ⊥ to “d” ; if t of cell at 
angle a then:

This may look rather special but when 
diffraction conditions are satisfied one 
can always describe these conditions in 
terms of “Bragg planes”.

3-D lattice constrains diffraction to be 
in single beams, so can always draw dif-
fraction on a 2-D diagram:

A diffracted “ray” is produced in the direction of the arrows, as a beam whose cross-sectional 
area is approximately the size of the crystal as seen from that direction.

The lattice limits when diffraction can occur, however, the relative intensity is determined by 
the relative intensity scattered from the molecule in that particular direction.

θ θ

“reflected”incident

td a d = t cos a

1b
2b

2a
1a

θ

θ θ

d
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Electrons in the path of an x-ray wave are set into forced vibrations by the periodically chang-
ing electric field of the x-ray wave passing by.  These oscillating electrons are themselves 
sources of x-ray waves.  This forced oscillation is of the same frequency as the incident x-ray 
wave, and the emitted x-ray waves are thus of this same frequency.  By this interaction the 
electrons are said to scatter the original x-ray wave.

Diffraction is cooperative combination of scattered waves.  This can occur if the scattering 
points are arranged in space in some regularly repeating manner.  In certain directions with 
respect to the incident wave and the array of scatterers, the scattered waves will combine con-
structively
     This can be used to increase the amount of scattered radiation to a point where meaningful 
measurements can be made.  This application is used in crystallography; for, in our case, the 
study of “globular” proteins and nucleic-acids.
     Conversely, the existence of a diffraction pattern and its characteristics can be used to de-
tect and deduce something about a repeating structure.  This aspect is exploited in the case of 
fibers, fibrous structures, and other extended polymers..

Scattering:

Diffraction:

DEFINITIONS
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The Appearance of the Diffraction Pattern 

If a piece of photographic film is put in place to intercept the x-rays, then it gets a mark at “0” from the 
direct beam and a spot at “P” from the diffracted (reflected) ray.

If d2 > d1 then θ2 < θ1 for diffraction to occur.

Notice that the distance O-P is approximately proportional to θ and inversely proportional to d. Spots 
far out from the center of the film come from planes that are quite close together in the crystal.

This reciprocal relationship between the spacings d in the crystal and the distances O-P in the diffraction 
pattern is the origin of the term “reciprocal space” used to describe the diffraction pattern. 

θ3

θ3θ1

θ1

θ2

θ2

O P1 O OP2 P3

rotate
crystal

rotate
crystal

1st order, refl. #2

film plane

1st order, refl. #1 2nd order, refl. #1

d1

2δ

2δd2d1δ

δ

1st order: d1 = full t1 of repeat          d2 =  t2                         2nd order: d3 = (t1)/2  = (d1)/2

        λ = 2(d1) sin(θ1)                         λ = 2(d2) sin(θ2)                 λ = 2(d3) sin(θ
3
) = 2(d1/2) sin(θ

3
)

The 2D crystal shown here has repeats t1 and t2 at right angles to each other.   As we saw earlier, this 
perpendicular relationship is not necessary, but sure makes it easier to think about.  In any case, d1 and d2 
are the perpendicular distances between the rows.  t1 and t2 define the repeating unit of the crystal, a.k.a. 
the unit cell.  In these examples where the Bragg Planes run along the unit cell edges,  the Bragg Planes 
of 1st order reflections span the unit cell, while the Bragg Planes of 2nd order reflections cut the unit cell 
in half (see next page).
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Diffraction as a probe for spacings of d within a crystal
Diagrams are those of the previous page but with a square atom halfway between the round 
atoms that are spaced at distance d1

lst order reflection #1 is weak because for that solution of the Bragg equation - with d1 being the dis-
tance between planes of atoms with 1 λ scattering path difference - the square atoms scatter 180° out of 
phase from the round ones. 

lst order reflection #2 is strong because for that solution of the Bragg equation  - with d2 being the 
distance between planes of atoms with 1 λ scattering path difference - the square atoms scatter in phase 
with the round ones, since they are both on the same planes. 

2nd order reflection #1 is strong because for that solution of the Bragg equation  - with d1' being the 
distance between planes of atoms with 1 λ scattering path difference = the square atoms scatter in phase 
from the round ones.  (The unique index of this reflection implies  d1’   )

1st order, refl. #21st order, refl. #1 2nd order, refl. #1

d1

d2

d1

0�

0�
180�

1λ = 2d1 sin θ1

0� 0�

1λ = 2d2 sin θ2

d1
'

0�
0�

0�

2λ = 2d1 sin θ3
 λ = 2(d1/2) sin θ3
 λ = 2d1' sin θ3 d1' = d1/2 

As one travels along the normal direction from 
plane to plane, there is one phase clock revolution 
for each λ scattering path difference.
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The Diffraction Vector

Refer to Molecular Scatter chapter for a general description of scattering. 
Diagrams: same examples as drawn earlier for Bragg Diffraction, but now showing the diffraction vector which is 
perpendicular to Bragg Planes and of a length proportional to the reciprocal distance between Bragg Planes.

  λ = 2d sinθ

Parallelogram construction:  s  is normal to the Bragg planes (and thus is fixed with respect to the 
crystal). The end of  s, then, is a point which by its position (direction and distance out) describes a set of 
Bragg planes.  Note that the length of  s  is inversely proportional to the Bragg plane spacing  d. The  s  
of the third diagram is twice the length of the  s  of the first diagram, and for the third case any point on 
a plane halfway between the original ones will scatter in phase with points on the original planes.

d1
'

d1

d2

d1

d2
d1

1st order, refl. #21st order, refl. #1 2nd order, refl. #1

1λ = 2d1 sin θ1 2λ = 2d1 sin θ3
 λ = 2(d1/2) sin θ3
 λ = 2d1' sin θ3

d1' = d1/2 

➝ ➝

➝

➝

s➝

a
a

➝s

b b

➝a

1λ = 2d2 sin θ2

➝
b

➝s

→ →

→

→

→

1st order reflection 
Bragg Plane d = d1 

2nd order reflection
Bragg Plane d = d1’  = d1/2

1st order reflection 
Bragg Plane d = d1 

     Every set of Bragg Planes has its own unique diffraction vector.   Just as the Bragg Planes divide up 
the real crystal in a regular manner, all the diffraction vectors describe the crystal.  The crystal is a lattice 
and the ends of the diffraction vectors describe a lattice, the reciprocal lattice.
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d1 d1d1

d2

d2 = d1/2 

➝

➝

s1
➝

a

b

➝a

➝b

s2
➝

Parallelogram construction:  s  is normal to the Bragg planes (and thus is fixed with respect to the 
crystal). The end of  s, then, is a point which by its position (direction and distance out) describes a set of 
Bragg planes.  Note that the length of  s  is inversely proportional to the Bragg plane spacing  d. 

The  s  for half-size spacing is twice the length of the  s  of the single spacing, and for the second case 
any point on a plane halfway between the original ones will scatter in phase with points on the original 
planes.

→

→

→

→

→

Draw Diffraction Vectors to show reciprocal relationship

Diffraction vector  s1  describes a set of Bragg planes spaced by d1 ,  s2  describes a set of Bragg planes 
spaced by d2 .   The diffraction vectors are a way describing both the sets of Bragg planes and the 
diffracted rays from those planes.

In the case where there is a square atom halfway between round atoms as shown, what is the relative 
intensities of the diffracted x-rays described by  s1  and  s2  ?

→

→

→

→
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Scale of the diffraction experiment:  1cm = 100,000,000Å 
unit cell size (range 50 to 200+)  100Å , 
crystal size (range 0.05 to 1 mm) 0.1 mm = 1,000,000Å
Spot size on detector just a little larger than the crystal cross-section.  1,000,000Å
crystal to detector distance (range 5 to 50 cm) 10 cm  =  1,000,000,000 Å   
0.1 mm crystal about 10,000 unit cells across. (Note: a crystal is a mosaic of crystal domains)
crystal to dectector in unit-cells:  10,000,000 uc
Unit cell on chalk-board: 1 uc = 1 ft, crystal size 10,000 ft = 2 miles  (size of Duke University)
detector distance 10,000,000 ft = 2,000 miles. (somewhat beyond the chalk tray, perhaps in Arizona)



2009 Chapter 4,sec 1,  Diffraction Vector: pg 4

Construction of the Diffraction Vector

Setup:

1. Determine the unit cell dimensions, wavelength of x-rays; scale 
if needed. Here we have lattice spacings of 3 & 4, and the wave-
length is 1.5 - all are in Å. The grid being used to construct the 
drawings at left has divisions in mm and the scale being used is 
5mm = 1Å.

2. Pick one of the lattice points as an origin.
3. Pick an arbitrary, but suitable length/scale for the incident vector 

a.   The construction here uses |a| = 5Å.

{

{ 3

4

d1=3
d 2

=
4

→→

Construction:

1. First place the lattice point chosen as origin  and draw a of length 
5, as a vertical line.

2. Determine the location of the other lattice points given that the 
distances to neighbors is 4Å and 3Å.  This restricts the neighbors 
to the perimeters of circles of radii 4Å and 3Å.  Construct this 
constraint by drawing two circles (or sectors if you don’t want to 
draw the full circle) centered at the origin.

3. Another constraint is Bragg’s Law; λ = 2dsinθ = 2(t/n)sinθ 
For n=1:  λ = 2dsinθ  ( d is the full repeat distance t = 3)   
 λ/2 = 1.5/2 = 0.75 = dsinθ 
for d=3,  sinθ = 0.75/3 and for d=4, sinθ = 1/4 
.75 and 1 are just the short sides of triangles of hypotenuse 
lengths 3 and 4, respectively, the sector radii drawn in 2.

4. Draw three neighbor lattice points by locating the intersection of 
a chord of length 1 from a (upper and lower two points), and of a 
chord of length 0.75 from the ⊥ to a (through the origin point).

5. Construct b.  b is at angle 2θ from the straight through of the in-
cident ray. The vector b is the same length as a and is tangent to 
a circle of radius 1 centered on the lower lattice point. The length 
of b is the same as a.

6. Construct s.  s is located by drawing two circles of radius a, one 
circle is centered at the base of a, the other at the head of b.  The 
head of s   is located at one intersection of these two circles, the 
base of s is at the other intersection i.e., the origin.  So s extends 
from the origin and is perpendicular to the line of lattice points

→

→ →

→
→

→

→

→

→

→

→

→

→

1

4

3
0.75

4

a

s

b

➝

➝

➝

→

→

→

→
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  s is normal to the Bragg planes (and thus is fixed with respect to the crystal). The end of s, then, is a 
point which by its position (direction and distance out) describes a set of Bragg planes. Note that the 
length of  s  is inversely proportional to the Bragg plane spacing d.      

Every set of Bragg Planes has its own unique diffraction vector.   Just as the Bragg Planes divide up 
the real crystal in a regular manner, all the diffraction vectors describe the crystal.  The crystal is a 
lattice and the ends of the diffraction vectors describe a lattice, the reciprocal lattice.

→

→→

The Reciprocal Lattice
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The crystal lattice and the reciprocal lattice are duals.  That is, each one describes the other and they are 
logically linked together.  It is convenient to make the origin of the crystal lattice and the origin of the 
reciprocal lattice to be the same point.  Then, during data collection, as the crystal rotates, the reciprocal 
lattice rotates.

The Ewald sphere helps describes diffracting conditions when the crystal is oriented to the incoming 
x-ray beam such that particular sets of Bragg Planes can “reflect” the x-rays. 

The center of the Ewald sphere is placed along the incoming x-ray beam with the center of the 
reciprocal lattice on the x-ray beam at the circumference of the Ewald sphere.  It is convenient to make 
the radius of the Ewald sphere be 1/λ .  When the crystal is rotated, the reciprocal lattice rotates, and 
when a reciprocal lattice point is on the surface of the Ewald sphere, the associated Bragg Planes are 
reflecting.  This is just the conditions of our parallelogram construction!

The actual diffracted x-ray goes out from the crystal at an angle θ to the Bragg Planes and at angle 2θ 
to the direction of the original x-ray beam.

There are several advantages to placing the crystal at the center of reciprocal space on the circumference 
of the Ewald sphere besides emphasizing that the crystal lattice and the reciprocal lattice are duals that 
rotate tegether and are both descriptions of the real crystal.
1) We developed the reciprocal lattice using the parallelogram construction which builds the reciprocal 
lattice around the crystal as a center.
2) Simultaneous diffraction from a range of wavelengths can be shown without any rescaling.
3) The kinemage showing diffraction conditions with the crystal and the reciprocal lattice locked to-
gether around a common center is much easier to make than the case where two rotation centers must 
be correlated.

Ewald Sphere: Crystal and Reciprocal Lattice
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HOWEVER:     Some textbooks show a different diagram.

e.g.     McPherson places the crystal at the center of the Ewald sphere, and the center of the reciprocal 
lattice on the circumference (where it must be).  This does makes drawing the direction of the diffracted 
ray easier since the x-rays follow a radius of the Ewald sphere from the crystal. 

ref: Alexander McPherson “Introduction to Macromolecular Crystallography”
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Ewald Sphere:  Set up for HelixBearHair.kin
Diffraction from a crystal of molecules described by how the Ewald-sphere (the generalization of all 
possible paralellogram constructions) intersets the reciprocal lattice (the diffraction-vector description of 
all Bragg Planes within the crystal.)
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Crystal of Molecules

Consider a crystal of molecules, each with two α-helical regions.

Lines mark equi-phase planes. 
Scattering from, e.g. alpha carbons, 
nearly in phase over all the unit 
cell (of course, exactly in phase 
with corresponding one in next 
unit cell). 

α-helix:
side-to-side packing ≈ 10 Å
3.6 residues / turn
1.5 Å rise / residue
5.4 Å rise / turn

View ⊥ to ab planes 10, 0, 0 reflection

b=21 Å
a=

15
.5

 Å

10, 0, 0 strong0, 2, 0 strong0, 1, 0 weak
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Concepts:  Reciprocal Lattice vs Bragg Planes 

We go on to further development of diffraction from a lattice by using the parallelogramconstruction to 
show the relationship of diffraction vectors to specific distances and directions in the real crystal.  Two 
concepts emerge from this approach:  

     One concept is that the reciprocal lattice is a description of the Bragg planes within the real space lat-
tice of the crystal.  The reciprocal lattice points are “named” (indexed) by the same “names”  (indices) that 
describe the Bragg planes.  The reciprocal lattice points are in a direction from the origin that is normal 
to their corresponding Bragg planes, and at a distance inversely proportional to the “d” spacing (the 
perpendicular displacement) of those Bragg Planes.  These  indices  are integers, and describe how the 
Bragg planes divide the Unit Cells of the crystal.  Each reciprocal lattice point corresponds to a possible 
diffracted ray from the crystal -- it is the parallelogram construction that illustrates that correspondence 
-- and the Ewald sphere construction (describes when diffraction will occur from a set of Bragg planes) 
is a general summary of all the possible parallelogram constructions.
 

     Another concept is that a value can be assigned to each reciprocal lattice point that is the relative in-
tensity of the corresponding diffracted ray.  Of course, each diffracted ray also has a relative phase which 
can be assigned to its reciprocal lattice point, but we can not measure that phase directly.  The intensity of 
a diffracted ray is determined by the relative offsets of the scattering points, the atoms, from the diffract-
ing Bragg plane.  We will explore that by filling in a few atoms in a crystal and seeing how their perpen-
dicular position with respect to the Bragg planes affects the phase of their scattering in the direction of 
the diffracted ray, and consequently, affects the intensity of that diffracted ray.  This phase as a function 
of the distance between Bragg planes can be described as “clock” turns around the circle that describes 
the magnitude and phase of the wave from an atom.

Bragg Plane definition:
Bragg Planes for crystals of few atoms (and as W. L. Bragg seems to have first described them) are 
conviently thought of as the planes of atoms making up the crystal.  However, as you have seen already, 
sometimes only some atoms line up on the Bragg planes even for relatively simple molecules, and for 
proteins few if any atoms are actually exactly on a given Bragg plane.
     The more robust way of describing Bragg Planes is in terms of the unit cell, however you happen to 
define it.  Then the Bragg Planes cut the unit cell edges into integer fractions, and the strength of dif-
fraction from a Bragg Plane set has to do with the spacing between atoms in the direction of that Bragg 
Plane normal where atoms separated by that “d” scatter in phase with each other.

The Unit Cell is the small parallelepiped built upon the three translations selected as unit translations.  
The unit cell repeats by those 3 translations to fill all space.
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Geometrical Factors that Affect Measured Intensities
1) Polarization of the reflected x-rays:  

The component of the incoming oscillation that is 
parallel to the plane of reflection is undiminished.

 But the perpendicular component is only “seen” by 
the reflected ray in projection (since the wave can-
not oscillate parallel to its direction of travel;) thus 
some energy is lost, and the amount of intensity 
lost is a function of  θ.

2) Lorentz factor: 
 To collect the full scattering pattern the crystal must be moved. If, because of this motion, 

some reflections get more time than others their relative measured intensities will be in-
creased. This is known as the Lorentz factor and is a function of almost every variable in-
volved in the motion, including θ.

3) Absorption: 
 Matter (electrons) absorb x-rays as well as scattering them.  If the crystal is not a sphere some 

paths through it are longer than others and will absorb relatively more of the x-ray beam.  
This absorption correction is sometimes measured empirically and sometimes calculated geo-
metrically from the known shape of the crystal and its position during each reflection.

None of these geometrical effects contains any information we are interested in: they are simply 
factors we must correct for before using the intensities to find out about the structure of our protein 
molecule.

(top view)

(side view)

vs.
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Size of the SPOT

     4 main factors contribute the the actual size of the observed spot that the diffracted ray makes on the 
detection device (e.g. film).
1) Size of the crystal.
2) Mosaic spread of the crystal.
3) Size of the x-ray source (presume each point of the effective source radiates in all directions).
4) Wavelength dispersion of the source. 

This presumes that the crystal is rotated such that all possible points in the crystal have opportunity to 
diffract.

In addition, two other factors that are part of the experimental setup will have an effect on spot size.
5) How parallel the rays are coming from the source.
6) How thick the detector is and the angle the x-rays hit it.  For instance, a multi-wire area-sensitive 
detector has to have a finite depth in which to catch the x-ray photons -- if the x-ray beam comes in at 
an angle, then there is a latteral uncertainty as to when the photon ionizes the detector gas.

     The trick is for a crystal to be perfectly-imperfect for the wave-length/atom-types such that the mo-
saic blocks are large enough to make sharp diffraction rays, yet small enough that the chance of a scat-
tered ray to diffract again within the mosaic block is relatively small.

Size of Mosaic Blocks

     Effective interaction probability, i.e. efficiency of an X-ray interacting with electrons in a crystal ac-
cording to James p 53 is 10-4 for a “strong” reflection (perhaps from NaCl, which I suppose would in-
teract more strongly with xrays than CNO molecules.  Apparently a multiplier to the atomic scattering 
factor.  

REALLY NEED A DRAWING OF MOSAIC CRYSTAL...

google      mosaic block protein crystal

need IUCR code to download pdf ’s   Albrecht Messerschmidt X-ray Crystallography of Biomolecules 
page 77:  mosaic block of size ca. 0.1 micrometer with average tilt angle 0.1 - 0.5 degrees for protein 
crystals.       0.1u = 0.0001 mm= 0.00001 cm = 1000Å 
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How an Individual Atom Affects the Structure Factor

1) f, the atomic scattering factor: 
 Atoms (i.e., the distribution of electrons) have a real, finite size, and so it is possible 

for various parts of an atom to scatter out of phase with one another. The same sort of 
path-Iength arguments apply as when we considered two separate atoms scattering out 
of phase. But for a given atom, the electron distribution is approximately spherically 
symmetric, and the contribution of this factor can be calculated as a function of θ or 
looked up in tables.

2) the B factor :  
All uncertainties in the position of an atom is put into the B factor.  Thermal motion 
is only a minor part of the B-factor for atoms of a macromolecule.  Atoms seem to 
vibrate, so their effective scattering is spread over a larger volume.  (It may not be a 
spherically symmetric volume, such as when vibration is along the direction of a bond.) 
This effect is also a function of θ. The most common formula (for the spherically sym-
metric case) is:

atom
x-ray

fn,θ e-B ( sin²θ )/λ²
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The combination of rays scattered by any two (or more) atoms depends on the amplitude and 
phase of each scattered ray. The amplitude depends on the [oscillator strength | number of 
electrons] in that atom (since it is electrons that scatter x-rays). The relative phase of the rays 
depends on the relative path lengths they have travelled. Wave 2 travels  (δ1 + δ2)  further 
than wave 1, so the phase change in that length is (δ1 + δ2)/λ .

The scattering pattern is distributed in all directions, and varies fairly smoothly.

Intensity in any particular direction is a function 
of the [strength of the oscillators | number of elec-
trons in the atoms] and of their relative positions. 
So if the molecules were randomly positioned, 
e.g. by free rotation, one could only find out some 
general property concerning distance such as how 
big the diameter (radius of gyration) is of the re-
gion where the oscillators are distributed. e.g. low 
angle x-ray scattering, light scattering experiments.  
This is of mathematical interest only, unless we 
can relate the pattern seen (or imagined) here to 
the pattern of structure in the molecule.

For x-rays the scattered ray has 180° phase shift from the incident ray - but this is true for all 
scattered rays so it makes no difference to how they combine.

Scattering of  by a MoleculeLight
X-Rays 

one
wave

two
components

molecule

oscillator; atom

light
x-ray source

{

Combination of} rays scattered
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vectors

δ1

δ2

scatterin
g p

at
te

rn
: "

tr
an

sf
or

m"

molecule

light
x-rays

}{



2009 Chapter 5,  Molecular Scatter: pg 2

Scattering from 2 oscillators in a plane

}

d1

d2

R

redefine as φ = 0
(to show difference)

d2 - d1

λ }path length difference
as a fraction of wavelength

d2 - d1
λ

φ = 2π

FReiφR = F1eiφ1  +  F2eiφ2

FR

Resu
lta

nt, R
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Scattering from Multiple Oscillators

•	 Point	P is an oscillator
•	 O is an arbitrary origin, which may or may not be an oscillator
•	 r is the vector from O to P, with components x, y, z
•	 a and b are standard vectors in the directions of the incident and scattered rays:  s = b - a 
•	 a, b scaled from unit vectors by 1/λ ; so all these related dimensions will be in Å-1 and 
    express distance as fractions of wavelength.

→ →
→

→→
→ → →

Path	length	difference		δ = d2 - d1 where, 
 d1 is projection of r on a direction :  d1 = r	•	a
 d2 is projection of r on b direction :  d2 = r	•	b

So,  δ = d2 - d1 = r	•	b  -  r	•	a  =  r	•	(	b - a )  =  r	•	s

 d1 and d2 are unitless as is δ.   i.e. δ = δ'/λ where δ' is the real measurement in Å and λ is 
wavelength in Å so δ is unitless fractional length in terms 
of wavelength.

→ → → →
→ →→→

→ → → → → → → → →

 δ = r	 •	 s
components:  x, y, z  h, k, ℓ  vector multiplication ( hx + ky + ℓz )

→→ }}

δ is dimensionless and x, y, z are in Å;  h, k, ℓ are therefore in Å-1 (reciprocal Å): they give us a 
                                                              useful way of describing a scattered ray.

Relative phase  φ  =  2π ( hx + ky +ℓz )  as in  |F|eiφ  = |F| ei2π( hx + ky +ℓz ) , expression for a light 
ray	scattered	from	P.
In this general case h, k, ℓ are not constrained to be integers.

NB: If x, y, z orthogonal, 
then h, k, ℓ directions
coincident with x, y, z.
Rule:  h ⊥ y, z;  k ⊥ x, z;  ℓ ⊥ x, y

O 

h k 

l

x axis 
h axis 

y axis
k axis

z axis
l axis

P d1 

x y 
z 

d2 

a ➝ 

a ➝ 

a ➝ 

➝ b 
➝ s ➝ s 

➝ b 

➝ r 
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More wrestling with units, dimensions:

 if x, y, z in Å, then h, k, ℓ in reciprocal Å, and
 if x, y, z in fractions of something, then h, k, ℓ in related reciprocal fractions. 

So the idea of a box around the molecule of interest in which we map ρxyz is not only a convenient en-
closure, it can be thought of as one box of many identical ones, i.e., a repeating function, a crystal.  Each 
such box is called an unit cell. 

If we express x, y, z as fractional coordinates in terms of the box dimensions, then  h, k, ℓ must be in terms 
of reciprocal fractions relating to the box dimensions. 

If the data is in terms of unitless h, k, ℓ we can get back to the molecule in terms of unitless x, y, z. We 
would need to know the wavelength to predict where the scattered rays would appear in our experi-
ment, and to get the size of the box in real dimensions for describing the distances between atoms in real 
dimensions. 

→→

 Fhkℓ e
i φhkℓ = ∑∑∑ ρxyz e

i2π( hx + ky + ℓz ) 
x y z

h k ℓ

equation of a wave

 We need
so components

δ = r • s 
 x,y,z h,k,ℓ

as unitless fractions of wavelength,
must multiply out to cancel units:

Note that the equations that we use imply repeating functions:

 ρxyz = ∑∑∑ Fhkℓ e
iφhkℓ  e-i2π( hx + ky + ℓz )
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Scattering from a Molecule of Multiple Atoms
Using Vector Notation

Intensity in any given direction (if molecule is in a crystal then only the 
directions given by the Bragg Law are allowed) is a function of the num-
ber of electrons in the atoms (oscillators) and the relative positions of the 
atoms.

Let h, k, and ℓ index the direction of the diffracted (scattered) rays (reflections).
 
By definition,  Intensity = (Amplitude)² or  I = F2 and  | Fhkℓ | = √Ihkℓ

| Fhkℓ | eiφhkℓ  =  ∑ fn eiφn

where fn is the  scattering power of the nth atom (oscillator), and
 φn is the phase of the ray scattered by the nth atom
 ( φn is a function of the x, y, z coordinates of that atom)

|Fhkℓ| eiφhkℓ  =  ∑ fn ei 2π( hxn + kyn + ℓzn )

If we knew or guessed all the atom positions we could calculate |F| and φ and so could check 
a trial structure against the real one by comparing |Fcalculated| vs |Fobserved| for each dif-
fracted ray (reflection).  But protein molecules have too many atoms to guess positions for!

That is,  Fmolecule  =  ∑ fatoms 
→→

NB:  actually fn is dependent on θ, the scattering angle because of polarization 
effect, size of atom, etc.

N

n=1

n=1

N

Fmol.

f1

f7

fn
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Equations and the Fourier Transform relationship
The Fourier transform is a general concept applicable to all kinds of light scattering, but it really comes 
into its own with x-ray crystallography where there is sufficient information to apply the details of the 
equations.

where in theory, but not in practice, the h, k, and ℓ sums are from -∞ to +∞.
So the electron density (which is our desired final result) is the Fourier transform of the F’s. Everything 
on the right-hand side of the equation is known except, still, for φhkℓ !

| Fhkℓ | eiφhkℓ  =  Volume  ∑∑∑ ρxyz ei 2π( hx + ky + ℓz )
of repeat-
ing unit

x y z

ρxyz  =  (Vol)-1 ∑∑∑ | Fhkℓ | eiφhkℓ e-i 2π( hx + ky + ℓz )
h k ℓ

)(

We assume that the molecule stays still, oriented in a definite position.  For stationary molecules in a 
crystal, one must consider the consequences of a regular array. (e.g. crystal diffraction) 

If however, the molecules tumble in solution, then one must average over all positions.  
e.g. Small Angle X-ray Scattering,  SAXS  :   refer  to :  

The F’s are the Fourier transform of the electron density, and it conveniently happens to be true that 
the inverse relation also holds:

→

Since it is electrons that are scattering x-rays, the scattering factor can be thought of in terms of the elec-
tron density, ρ, throughout the molecule.  Rewriting the formula from the previous page in terms of ρ:

where the sum is over the entire unit cell.

Scattering, point particle Chapter 3, sec 1, Light Scattering: pg 10:
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The Equations...

F = | Fhkℓ | • eiφhkℓ  =  ∑ On • fn,θ • e-Bn (sinθ / λ)² • ei 2π( hxn + kyn + ℓzn )
n

→

Symbols used:
λ : wavelength of radiation
d : interplanar spacing, the effective distance associated with a particular diffracted ray
θhkℓ : angle of incident beam to the h, k, ℓ Bragg plane
h, k, ℓ :	 integer	index	numbers	of		a	particular	Bragg	Plane,	a	diffracted	ray,	a	“reflection”,
																		index	of	a	point	of	the	reciprocal	lattice		“reciprocal	space”
| Fhkℓ | : amplitude of the hkℓth diffracted ray
φhkℓ : the phase of the hkℓth diffracted ray
B : B-factor (historically the Temperature Factor, but dominated by other uncertainties)
fn,θhkℓ : individual atomic scattering factor of the nth atom as a function of θhkℓ
xn,yn,zn : coordinates of the nth atom
mhkℓ : figure of merit for phase of the hkℓth diffracted ray
N : total number of atoms in the repeating unit of the crystal
On : occupancy of the nth atom.
Vol : volume of the repeating unit
ρxyz	 :	 electron	density	at	coordinates	x,	y,	z	in	the	crystal				“real	space”

| Fhkℓ | • eiφhkℓ  =  Volume  ∑∑∑ ρxyz
 • ei 2π( hx + ky + ℓz )

of repeat-
ing unit x y z( )

ρxyz  =  (Vol)-1 ∑∑∑ mhkℓ 
 •| Fhkℓ | • eiφhkℓ • e-i 2π( hx + ky + ℓz )

h k ℓ

∞−∞ →

N

λ = 2dh,k,l sin(θh,k,l)

Amplitude •    phase

Amplitude •  phase Amplitude            •       phase

Amplitude •  phaseAmplitude •  phase

“Amplitude”
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Patterson Function added to the equations

F = | Fhkℓ | • eiφhkℓ  =  ∑ On
 • fn,θ

 • e-Bn (sinθ / λ)² • ei 2π( hxn + kyn + ℓzn )
n

→

Patterson map 

Symbols used:
λ : wavelength of radiation
d : interplanar spacing, the effective distance associated with a particular diffracted ray
θhkℓ : angle of incident beam to the h, k, ℓ Bragg plane
h, k, ℓ : integer index numbers of  a particular Bragg Plane, a diffracted ray, a “reflection”,
                  index of a point of the reciprocal lattice  “reciprocal space”
| Fhkℓ | : amplitude of the hkℓth diffracted ray
φhkℓ : the phase of the hkℓth diffracted ray
B : B-factor (historically the Temperature Factor, but dominated by other uncertainties)
fn,θhkℓ : individual atomic scattering factor of the nth atom as a function of θhkℓ
xn,yn,zn : coordinates of the nth atom
mhkℓ : figure of merit for phase of the hkℓth diffracted ray
N : total number of atoms in the repeating unit of the crystal
On : occupancy of the nth atom.
Vol : volume of the repeating unit
ρxyz : electron density at coordinates x, y, z in the crystal    “real space”
Pxyz : Patterson function value at coordinates x, y, z
                  value is the product of electron densities separated by that vector distance
                  “Patterson space” has same shape and dimensions as real space
                 usually indexed u, v, w to distinguish distances-between from atom positions at x,y,z .

| Fhkℓ | • eiφhkℓ  =  Volume  ∑∑∑ ρxyz
 • ei 2π( hx + ky + ℓz )

of repeat-
ing unit x y z( )

ρxyz  =  (Vol)-1 ∑∑∑ mhkℓ 
 •| Fhkℓ | • eiφhkℓ • e-i 2π( hx + ky + ℓz )

h k ℓ

∞−∞ →

Pxyz  =  (Vol)-2 ∑∑∑ | Fhkℓ |²• e-i 2π( hx + ky + ℓz )
h k ℓ

∞−∞→

N

λ = 2dh,k,l sin(θh,k,l)

Amplitude •  phase

Amplitude •  phase

Amplitude •  phase
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To use this trick, one locates the heavy atoms, calculates | φH | ∼ | φT | , calculates an approxima-
tion to the electron density map using those phases.   That map will hopefully show at least some of 
the lighter atoms, which are used to get a better approximation to the phase for an improved electron 
density map which may show a few more atoms, etc., etc. 

Patterson Maps

 - a possible method for locating atom positions 

We can experimentally measure the intensity (I, or | F |²) of each spot in the diffraction pattern; but 
we do not know the phase of each F, so we cannot calculate the electron density map: 

→

ρxyz  =   ∑∑∑  Fhkℓ  e-i 2π( hx + ky + ℓz )
h k ℓ

→

However, in order to make the best use of what information we do have we can calculate a special 
Fourier transform of the intensities: 

Pxyz  =  ∑∑∑ | Fhkℓ |²  e-i 2π( hx + ky + ℓz )
h k ℓ

A plot of this function is called a Patterson map, and it has a peak for each vector between a pair of 
atoms in the crystal The size of each peak is the product of the number of electrons in each atom of 
that pair. (The Patterson function is usually expressed in terms of u,v,w, instead of x,y,z because it shows 
separations between atoms rather than real positions in space.) A sample simple structure and its Pat-
terson map are shown on the next page. 

This method is used very frequently in small-molecule crystallography, but it is hopeless for proteins, 
where no atom could be big enough to dominate all those thousands of C,N, and O. 

In very simple cases one can reason backward from the Patterson map and discover the atom positions.  
Also, if there are a few heavy atoms that dominate the Patterson map then their positions can be deter-
mined and used to help solve the rest of the structure.  With dominant heavy atom(s):

| FT | ∼ | FH | and | φT | ∼ | φH |
Patterson map using | FT |² (measured)  Patterson map with | FH |² 
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Patterson Maps

Figure 1 shows a single unit cell 
(repeating unit) of a simple 3-atom 
crystal structure, with all the vectors 
between pairs of atoms drawn in. 
Figure 2 shows these vectors as 
starting from a common origin.  The 
Patterson map has a peak at the end of 
each vector, plus an origin peak.

Any vector between atoms in different 
unit cells, as in the dotted arrow of 
Figure 3, is just the unit cell translation 
plus one of the vectors we already 
plotted.

Thus if we repeat the same 
pattern of peaks at each 
corner of the unit cell, as 
in Figure 4, we include all 
vectors between atoms.

Figure 5 shows what this same Patterson map 
would look like when plotted in the customary 
way as a contour map.

1 
→

 2

2 
→
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1 →
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Fig.  2

3 →
 1 3→
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Fig.  4

Fig.  5
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Phasing - Isomorphous Derivative Method
Add just one or a few heavy atoms to the crystal without disturbing the rest of the structure. This 
can be done either by:
 Substitution -- Ba++ for Ca++  ,    I for CH3
 or  Addition -- PtCl4 in space between molecules 
 or  changing wavelength so a particular “heavy” atom scatters more or less -- a 
small effect but useful in special circumstances.   (Anomalous scattering, MAD, etc. considered in 
another section.)

(The native protein and the derivatives are 
usually separate crystals.*) 

We do a Patterson map using ≈ |FH|², find the heavy atoms, and calculate  φH.  This works even 
though this approximation is only really good if FPH and FP are of nearly the same phase. 

Fortunately, 
I) Sometimes the phases are constrained to be either 0° or 180°. 
2) There is a trick we can use: anomalous scattering by the heavy atoms reveals the difference 

of φH from φP . 
3) Simple subtraction actually works fairly well because 

a) Error can only reduce |FH|, so that term merely contributes less to the Patterson than 
it should have.

b) We are using hundreds or thousands of measurements to determine a few heavy atom 
positions,  so the Patterson peaks build-up in the right places. 

FH
→

FPH
→

FP
→

FP
→

+ FH
→

|FPH| - |FP| ≈ |FH|

→

FPH
→

=

FP is from native protein crystals. 
→

FPH  is from derivative crystals.

FH is from an imaginary crystal containing 
only the heavy atoms.

|FP| and |FPH| are measured quantities 
so an approximate |FH| can always be calculated.

→

→ →

FH
➝

FP
➝

FPH
➝

FH
➝

FH
➝

FP
➝

FP
➝

FPH
➝

FPH
➝

badless goodgood

*Same crystal: changing wavelength, or adding 
heavy atoms to a crystal in a flow cell. 
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 Phasing --  Determination of øP

|FP| can be measured; we must find φP (for each h, k, ℓ reflection).
|FPH| can be measured; |FH| and |φH| can be calculated for each h, k, ℓ. 

Lay out circles of radii |FP| and |FPH| at the 
ends of the calculated vector FH (arrow in 
diagrams).  The intersections of the circles 
give possible values for φP; but there is a 
twofold ambiguity!

So, get a second heavy-atom derivative: measure |FPH'|, calculate IFH'| and φH'. 
Layout the circles for this second case also: *

This case will give a different twofold am-
biguity, and the alternative that agrees with 
one of the intersections from the first case 
should give the correct φP. 

Do this for all reflections. 

Using |FP(h, k, ℓ)| and φP(h, k, ℓ) , plug into the Fourier transform formula to calculate an 
electron density map.

FP

FPH φP

φH

?

FP

FPH'

φP

φH'

* For each derivative, calculate a |FPH|-|FP| Patterson map and solve for those heavy atoms.  Thus for 
each derivative |FH| and |φH| can be calculated for each h, k, ℓ.
The heavy atom models are independent, and before they can be combined, they must be related to the 
same origin.  There are various tricks that take advantage of symmetry and patterns in the diffraction 
from the native protein molecule to do this.  However, the best way to relate the derivatives is to make a 
crystal with BOTH derivatives at once.  The Patterson map from this this combined derivative will give 
the relative postions of the heavy atoms, even if the crystal is of poorer quality.
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Reference wave FH1
Amplitude calculated
Phase calculated from 
known heavy atom 
position 

2 choices for wave FP 
from all protein atoms 
Amplitude measured 

What 2 phase for P 
will give the measured 
|FPH1|? 

FP

FP
FH1

FPH1

FPH1

FH1

FP

FPH

φH1  0

HeavyAatomIisomorphousReplacement #1

 FH1 + FP  = FPH1 
Reference wave + 
protein wave = 
Amplitude measured 
for FPH1
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Reference wave FH2
Amplitude calculated
Phase calculated from 
known heavy atom 
position 

2 choices for wave FP 
from all protein atoms 
Amplitude measured 

What 2 phases for P 
will give the measured 
|FPH2|? 

 FH2 + FP  = FPH2 
Reference wave + 
protein wave = 
Amplitude measured 
for FPH2

FH2

FP

FPH

φH2  135

FP

FP

FH2

FPH2

FPH2

HAIR #2
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Reference waves 1 & 2
Amplitudes calculated
Phases calculated from 
known heavy atom 
positions 

 wave FP 
from all protein atoms 
Amplitude measured 

What phase for P will 
give the measured 
|FPH|’s? 

2
1

FP

FH2

FP

FPH

MIR Multiple Isomorphous Replacement

 FH1 + FP  = FPH1 
 FH2 + FP  = FPH2  
Amplitudes measured 
for FPH1 and  FPH2

 FH1
 
 FH2

 FP 

FPH1

FPH2
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Phase Probability Distributions

Because the data are by no means perfect, one does not try to find a unique φP where for both 
derivatives the circles intersect.  Instead, a probability of intersection is defined that is related to 
the distance between these circles (as measured along a FPH radius.)

where ε is an appropriate estimate of the error in the data.

Each probability distribution will be bimodal.  They can be plotted on circular graphs, with radial 
distance out beyond a reference circle representing the probability of a given phase angle for φP. 
The probability distributions then can be multiplied together to give a new probability distribu-
tion that hopefully will have only one large peak at the true φP, as shown below for the same two 
derivatives discussed in Phasing -- Isomorphous 2.

Normally, more than two derivatives are used in solving a protein structure. These probability 
distributions provide a convenient method of combining several sets of imperfect data. 

P = e(       )²-dist
ε

prob. dist. for 
derivative H 

φP

prob. dist. for 
derivative H' 

combined 
prob. dist.

When multiplying probability distributions:  point by point multiply the probability at that 
point of one distribution by the probability of the other.  It is important to put a “floor” under 
the low values:  Otherwise, good probability in one distribution could be multiplied by an erro-
neous “zero” value in another and thus wipe out the correct value.  
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φP

Probability distributions correlated with triangles.   The FP circle is centered on the arrow head.  
The probability distributions are drawn around the circumference of the FP circle. 

Triangles and Phase Probability Distributions

This is a good determination of the Phase!   If the distribution as shown really measures the 
density on the circumference of the FP circle, then  the center of mass of the resultant probability 
distribution is very close to the tip of the FP arrowhead.  This reflection would have a figure of 
merit very close to 1.0.

GOOD CASE
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φP

m

Probability distributions correlated with triangles.   The FP circle is centered on the arrow head.  
The probability distributions are drawn around the circumference of the FP circle. 

Triangles and Phase Probability Distributions

This reflections has a less sure determination of its Phase!   
If the distribution as shown really measures the density on the circumference of the FP circle, 
then the fractional radius of the center of mass of the resultant probability distribution is the 
figure of merit.  This reflection would have a figure of merit about 0.7.

[Note: There is now a more elaborate method called Maximum Likelihood, which explicitly 
takes into account estimates of possible uncertainty in both the amplitude measurement and in 
knowledge of the phase of all components.]

NOT SO GOOD CASE
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Anomalous Scattering

Usually the x-ray wave which drives the electrons into forced vibrations is of a much higher 
frequency than the resonant frequency of the electrons. In this case, the forced damped simple 
harmonic oscillations of the electrons will be 180° out of phase with the driving wave.  This 
behavior is a completely general characteristic of forced simple harmonic motion. It depends 
on the interaction of the driving force and the natural restoring force of the oscillator, and it 
can easily be demonstrated with a pendulum or spring. The relationship of phase lag to fre-
quency is shown on the diagram: 

Sometimes the binding of some inner electrons of an atom is of such a strength that the reso-
nant frequency is shifted from that usual for free electrons toward the frequency of the x-ray 
wave.  These electrons will oscillate nearer to 90° out of phase (and also more violently, since 
they are nearer resonance). For a given atom, then, most of the scattered ray has a 180° phase 
lag and there will be a few electrons-worth of scattering with a 90° phase lag.  Relative to the 
normal diffracted ray, therefore, the anomalous part of the scattering has a 90° phase advance.

The amount of anomalous scattering for a given atomic species is known and can be looked up 
in tables (International Tables for Crystallography, Vol. III).  For a given x-ray wavelength an 
atom’s scattering will be described as:

ftotal = f0 + f' + if''

usual scattering at that 2θ

correction to usual scattering

number electrons-worth of 
anomalous scattering

means 90° out of phase

180°

90°

0° ω0
resonance ω of driving force
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This is what a vector diagram looks like with anomalous scattering, for a reflec-
tion of phase φ:

This turns out to have consequences for the diffraction pattern, if we consider 
a crystal in which only a few of the atoms (usually, only the heavy ones) exhibit 
anomalous scattering.

Friedel pairs are similar reflections that are taken on opposite sides of a crystal. 
Normally their intensities are exactly equal (as we will show on the next page); it 
is this equivalence that introduces a center of symmetry into all diffraction pat-
terns, whether the crystals have a center of symmetry or not. 

−θ

−θ
+θ

+θ

δ δ

δδ

2δ = nλ
2δ = nλ

in phase ;

reflection h, k, l

in phase ;
Friedel pair
-h, -k, -l

ft

f0 + f'

f'' φ + 90°

φ
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Now let us consider the phase relationships within each triatomic molecule of 
the crystal lattice on the last page.  The geometry is the same for reflections from 
opposite sides of the crystal, except that for the +θ case the rays from the tri-
angle and circle atoms are ahead of the reference ray (square atoms) and for the 
-θ case they are behind.

These intensity differences between |Fhkℓ|+ and |Fhkℓ|- are small, but 
measurable. 

|F(+θ)| = |F(-θ)| because the vector diagrams would superimpose if the -θ one 
were reflected up onto the +θ one; so the Friedel pair reflections have the same 
intensity.   But suppose one of the atoms (say, the triangles) has anomalous scat-
tering: then an f " term with a 90° phase advance is added onto its f vector.   Now 
when we superimpose the two diagrams as at the right the f " parts do not fall on 
top of each other and |F(+θ)| < |F(-θ)|. 

φ3 = -β

φ3 = +β

φ2 = -α

φ2 = +α

φ1 = 0°

φ1 = 0°
f1

f1

f2

f2

f3

f3

F-θ

F+θ

−θ
+θ

δ'

δ'

φ3- = -βφ3+ = +β

f1

f1

f2

f2

f3

F-θ
F+θ

φ3- = -β + 90°''''φ3+ = +β + 90°

f3

f3-''

f3+
''

f1

f3

f3-''
f3+

''

F+θ

F-θ

f2
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Uses of Anomalous Scattering
1) To help get an accurate value ( see phasing by isomorphous replacement, page 1 ) for the 

heavy atom contribution |FH|,  given measured values of |FP| (native protein crystal) and the 
Friedel pairs |FPH

+| and |FPH
-| from the heavy atom derivative protein crystal.

in the small (approximately) right triangle:
sin(γ) = ∆ano/2fH

applying the law of sines to the large 
triangle:

sin(α) =            sin(γ)

Since we know two sides ( |FP| and |FPH|av  ) and the cosine of the included angle in the 
large triangle, we can use the law of cosines to solve for the third side,   which is what we 
wanted to find. 

scattering of heavy atom can be looked up.  All other quanti-
ties on the right hand side are measured experimentally. This 

gives us an accurate way of finding |FH|, rather than approximating it by |FPH|  - |FP| as 
we did in the section on phasing by isomorphous replacement.

|FP|
|FPH

+|

|FPH
-|

|FPH|av

fH-

fH+

''

''

|FH|

Δano = ( |FPH
+| - |FPH

-| ){
γ

γ

α

"

|FH|
|FP|

substituting, and letting
κ = |FH| / fH"

sin(α) =                   =
|FH|
|FP|

 ∆ano

2fH" 2 |FP|
∆anoκ

cos(α) = { 1 - sin²α }½ 
= { 1 -                      }½

4 |FP|²

∆ano²κ²  

 |FH|² = |FP|² + |FPH|²av - 2|FP||FPH|av { 1 -             }½
4 |FP|²

∆ano²κ²  

κ = |FH| / fH =" normal
anomalous 
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2) To help find the protein phases:

The best way to handle the anomalous scattering to get φP is illustrated below. Instead of just 
using the direction of the difference between |FPH| and |FPH| it makes use of the magnitude 
of that difference. That way you get an accurate phase if the measurements are exact, and you 
go wrong less spectacularly if they are inexact.

After laying out the known FH vector with its +θ and -θ anomalous terms, you make a series 
of trials at each φP direction. At each trial there will be a trial difference between |FPH| and 
|FPH| which can be compared with the difference you measured experimentally. 

Uses of Anomalous Scattering, cont’d

As in the diagram at the left, anomalous 
scattering resolves the twofold ambiguity in 
each protein phase determination, because if 
|FPH| < |FPH| the triangle on the right must 
be the correct one. This means that theoreti-
cally one heavy-atom derivative is sufficient to 
determine protein phases and make an electron 
density map (this SIRAS is now done quite 
routinely with the help of a few additional 
tricks); or, if you have several isomorphous 
derivatives then anomalous scattering mea-
surements will improve the accuracy  of your 
φP values.

+ -

φ
FP

+-

+ -

FP

+
-

FH
➝

φP
trials

If ∆ = trial difference - experimental difference, 
then 

P = e-( ∆² / ε² )

(where ε is an estimate of the error in the anom-
alous difference measurements) will give a phase 
probability distribution that can be combined 
with the ones derived in Phasing-IR-6.

-
+

→
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Uses of Anomalous Scattering, cont’d

3) “Cross-Fourier” maps to locate additional heavy atoms derivatives

If, from one or more previously analyzed derivatives, one has a fairly good value for φP, then 
if |F+

PH| and |F-
PH| are measured on a new derivative an initial value for φH can be obtained 

immediately. 

Laying out Fp as a known vector and 
swinging circles from either end of it 
of lengths |FH| (from law of cosines 
formula) and |FPH|av, the two inter-
sections will give two possible values 
for φH. If |F+

PH| > |F-
PH| then φH1 

is correct, and if |F+
PH| < |F-

PH| then 
φH2 is correct. 

Now that we know both |FH| and φH 
for every h,k,ℓ we can calculate an elec-
tron density map showing the heavy 
atom positions in the new derivative. 
This technique is especially valuable if 
the new heavy atom occupies a number 
of different sites on each protein mol-
ecule, in which case the Patterson map 
could be too complex to be unravelled. 

4) Determines handedness (absolute configuration, enantiomorph)
Right-handed and left-handed molecules are indistinguishable in their effects on the or-
dinary intensities, but they would give the opposite anomalous scattering terms. So, using 
anomalous scattering one can see in the electron density map that the molecule indeed has 
ℓ-amino acids and right-handed α-helices, rather than having to use their occurrence as a 
criterion for whether one had guessed the correct enantiomorph.

+

+

-

-

|FH|

FP
➝

φH2
φH1

|FPH|av
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@text 
SIRAS.kin 
Single Isomorphous Replacement with Anomalous Scattering
|Fp| = 100 
IFph-| = 128.965  e.g. “L3” measurement of MAD experiment 
IFph+| = 125.849 
del anom = 3.116 with - > + 
IFph|av = 127.407

Take “L3” as typical for SIRAS since often one is working from a fixed wavelength x-ray 
source which is not optimal for the particular anomalous scatterer in the experiment’s crystal.

Anomalous Scattering: SIRAS

PhaseSIRAS.kin

SIRAS, Single Isomorphous Replacement with Anomalous Scattering, is illustrated with 
PhaseSIRAS.kin in either Mage or KiNG.  The following few pages are frames from this 
kinemage taken to show key steps in understanding this method.
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Fp: φP = 100 ?

Fp: φP = 30 ?

0
Fp=100

Fh=32, Fφ = 65, Fh anom: 3.5

Fph av = 127.4

PhaseSIRAS.kin   Isomorphous part

Fp: φP = 30 ?

0Fp=100
Fh = 32,
 Fh φ = 65,     Fh anom: 3.5

Fph av = 127.4

Fp: φP = 264 ?

PhaseSIRAS.kin   Anomalous Scattering part

PhaseSIRAS.kin   Isomorphous part combined with Anomalous Scattering part

Fp: φP = 100 ?

Fp: φP =30 ?

0Fp=100
Fph av = 127.4

Fp: φP = 264 ?

Fh = 32,
 Fh φ = 65,     Fh anom: 3.5
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MAD:  Multiple wavelength Anomalous Dispersion

     There are two approaches to abstracting information from a MAD experiment.  One is to use all 
information in a set of simultaneous equations, mathematically satisfying perhaps, but using a different 
intuition then our geometrical approach.  Another is to treat the experiment as a combination of iso-
morphous changes in the scattering power of the “heavy” atoms along with associated anomalous scat-
tering differences.  This uses the same conceptual machinery already developed for the SIRAS method, 
and, indeed, one of the commonly used computer programs for MAD phasing was originally developed 
for SIRAS.

     Theoretically, all that is really needed is data at two wavelengths.  Recall that in SIRAS a difference 
in isomorphous scattering along with one pair of anomalous scattering sets is sufficient.  However, not 
only does redundancy of taking data at more than 2 wavelengths help in this experiment where one is 
interested in small differences between large numbers, three wavelengths can be selected to optimize the 
phasing information (and often data at 4 wavelengths is taken for further assurance).

     Three wavelengths can be chosen, in terms of the SIRAS analysis, such that one pair  has maximal 
“isomorphous” differences, and an intermediate wavelength gives maximal anomalous differences.  At 
the absorption edge of an element, inner electrons come into resonance with the incident x-ray energy, 
these electrons scatter more strongly and with a different phase shift (i.e. more like 90 phase lag) to the 
incident wave.  There also are slightly fewer electrons scattering with the usual 180 phase lag, so the 
usual scattering falls off while the anomalous scattering increases as the absorption edge is crossed.  The 
effect is specific to the element but is subject to slight shifts because of interactions with surrounding 
atoms, so good practice is to run a scattering scan across the wavelength region and determine exactly 
the scattering profiles for the crystal under study.

     Scattering from an element can be expressed as  f(total) = fo + f ’ + f ”  where fo is the expected scat-
tering for that element at the angle of the measurement, f ’ is the change in the usual 180 deg. phase 
lagged scatter, and f ’ is the amount of scatter with a 90 deg. phase lag.  (2 components at 90 deg. of 
course, can represent all scattering.)

f ’ hits a minimum just at the absorption edge where f ” is rapidly changing, and f ” has a sharp maximum 
at the high energy side of the edge.  Let L1 be the point of minimum usual scattering, L2 the point of 
maximal anomalous scattering, and L3 be remote from the edge where the usual scattering is no longer 
depressed.  Then most of the phasing power can be extracted from the experiment just by taking the 
difference between L1 and L3 as the “isomorphous” part (averaging the Bijvoet pairs taken at those 
wavelengths) and the Bijvoet pair at L2 for the anomalous signal.  Of course, with 3 sets of Bijvoet pairs 
there are other ways to combine the data sets to enhance the accuracy, but most of the power is gained 
from those optimal combinations.

     Modern “area” detectors and high intensity x-rays from a synchrotron source on frozen crystals, 
allow for efficient collection of the Bijvoet pairs and redundancy to provide accurate intensity measure-
ments.
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(Figures from Stout and Jensen, 2nd Edition)
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@text
MAD.kin
 “L1” measurement near adsorption close to minimum of f ’
|Fph-| = 122.396      |Fph|av = 120.902  take average as Fph, i.e. isomorphous derivative data
|Fph+| = 119.408
del anom = 2.99 with - > +

 “L2” measurement near adsorption close to maximum of f ’’
|Fph-| = 125.658      |Fph|av = 122.893
|Fph+| = 120.127
del anom = 5.531 with - > +

 “L3” measurement far from adsorption edge
|Fph-| = 128.965      |Fph|av = 127.407  take average as “Native”== Fp
|Fph+| = 125.849
del anom = 3.116 with - > +

MAD treated as SIRAS
 L1 chosen for maximal Δf ’
 L2 chosen for maximal Δf ”
 L3 chosen for minimal Δf ’
Thus L1av - L3av is the maximum “isomorphous” difference: analogous to “derivative - native” 
Where L1av = average of L1+ and L1-, and L3av = average of L3+ and L3-.
 Note that this exactly isomorphous “derivative” has less scattering power than the “native”, 
so in general,  L1av - L3av = “FPH - FP”  will be negative. 
Also L2+ - L2- is the maximum anomalous difference.

One then computes both an isomorphous and an anomalous Patterson map.  
The isomorphous uses FH = FPH - FP =  L1av - L3av, and 
the anomalous uses  L2+ - L2- .  Each Patterson map could theoretically be solved by itself, but in 
practice looking at both makes finding the correct peaks much easier.  Then one has coordinates of the 
“heavy” atoms (in this case, the anomalously scattering atoms).  With these coordinates, for any diffract-
ed ray (spot, reflection, reciprocal spot, etc.) one can compute the FH vector.  Since the only difference 
between the isomorphous pairs is ΔΔf ’  that is what the fn of the “heavy” atom is.

PhaseMADasSIRAS.kin  
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MAD:  + & - at 3 different wavelengths for 6 data sets.  For each hkl reflection, the six 
circles should intersect at one point when drawn from appropriately positioned vectors rep-
resenting the waves from the anomalously scattering atoms. .

PhaseMADasSIRAS.kin  
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L1L2
L3

L1L2
L3

L1-L3 as Isom Fh

0rigin of Fnative

L2+- as Anom difference

L1-L3 as Isom Fh

0rigin of Fnative

L2+- as Anom difference

MAD as SIRAS:  diagrams to show how to set up the effective “heavy” atom wave vector 
for a particular reflection once the isomorphous and anomalous Patterson maps have been 
solved to yield the position of that heavy atom in the unit cell.

PhaseMADasSIRAS.kin  

MAD as SIRAS:  Draw Fnative circle from the head of the isomorphous Fheavy-atom 
phase vector, draw F derivative circle from the base of the isomorphous Fheavy-atom phase 
vector.  The intersection points are the 2 possible phases of the “native” phase vector. 

 F native circle

 0 deg0rigin of FnativeL1-L3 as isom Fh

F isom derivative circle

 F native circle

 0 deg0rigin of Fnative
L2+- as anom diff

MAD as SIRAS:  At regular intervals around the Fnative circle, measure the distance from 
those points to both the + and - ends of the anomalous vectors.  The closer the difference be-
tween those lengths is to the actual measured anomalous difference, the more probable that 
is the phase of the “Fnative”..
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 F native circle

 0 deg0rigin of FnativeL1-L3 as isom Fh

F isom derivative circle

L2+- as anom diff

MAD as SIRAS:  Multiplying the two phase probability distributions will give a combined 
phase probability distribution.  A maximum shows where the phase triangles coincide, or at 
least a best phase and a figure of merit as a measure of the spread of the distribution..

PhaseMADasSIRAS.kin  

MAD as SIRAS:  Extra diagram showing that the phases from the anomalous data are in 
the direction of where the two separate anomalous circles ovelap.

0rigin of Fnative
L2+- as anom diff

L2+ circle

L2- circle
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A diffracted wave is the sum of contributions from all atoms.

F = | Fhkℓ | • eiφhkℓ  =  ∑ On • fn,θhkℓ
 • e-Bn (sinθhkℓ/ λ)² • ei 2π( hxn + kyn + ℓzn )

n

→ N

Electron density is the Fourier transform of all diffracted waves.

          ρxyz       =       (Vol)-1 ∑∑∑ mhkℓ 
 •| Fhkℓ | • eiφhkℓ • e-i 2π( hx + ky + ℓz )

h k ℓ

∞−∞ →

    Amplitude                                  (Amplitude-factors) • (Phase-factors)
(electron density has no phase)                       here the x,y,z is the point in the unit cell 

The x,y,z coordinates actually used in the calculaton are fractions of the unit cell edges a,b,c.  This is in 
accord with the h,k,l actually representing spacings defined in terms of Bragg planes that cut the edges of 
the unit cell into integral fractions.  Just as h,k,l  defines directions h ⊥ y,z ; k ⊥ z,x ;  l ⊥ x,y perpendicular 
to the planes of the unit cell parallelepiped,   the x,y,z directions are aligned with the edges of the unit 
cell.  Thus the natural coordinate system of the model is (often) non-orthogonal and non-normalized.   
However, most graphics programs (and most people) work with ortho-normal Cartesian coordinates in 
standard units (usually Ångstroms).  Since a,b,c can be expressed in Å at the known angles of the unit cell, 
Cartesian model atom coordinates are calculated from the size and shape of the unit cell.

experimental phases, model phases

     When some sort of starting values of the phases are available, a model can be built into the electron 
density.  This electron density is dependent on both the amplitudes and the phases of the  h,k,l data 
points.  The appearance of the image turns out to be most dependent on the phases,  i.e. on the part not 
known directly from experiment, and thus quite susceptible to errors and misconceptions.  Initially errors 
in deriving the starting phases, and later as the model itself is used to calculate phases, from errors and 
misconceptions about molecule.

Residuals, R-values, assess agreement between datasets. (here model vs experimental)

Rcryst = ∑ | Fobs  -  Fcalc |
∑ | Fobs |

When we know the φP for each reflection, we can use the Fourier transform formula to get a 
picture of the electron density in the molecule:

When we know (some) of the coordinates of a model, we can use a Fourier transform of these to get 
calculated phases for each reflection in order to make a (hopefully) better electron-density image

Also, the calculated amplitudes can be used to evaluate the model!

But since Rcryst can be forced to appear good by warping the model -- the model must also be evaluated 
by other criteria.   Also, a small subset of the data can be withheld from the refinement process.  These 
data points can be used to calculate an Rfree  which should get better as Rcryst gets better as long as the 
model changes are really an improvement toward matching what the molecule really is. 
Rfree  is a very valuable control against over-fitting.  
Rfree  is usually just a few percentage points greater than Rcryst
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F = | Fhkℓ | • eiφhkℓ  =  ∑ On • fn,θhkℓ
 • e-Bn (sinθhkℓ/ λ)² • ei 2π( hxn + kyn + ℓzn )

n

→ N

Model improvement involves (re)building a model into the electron density (real space “refiinement”),
and shifting parameters to improve the fit of the calculated “structure factors” (data) to the observed data 
(reciprocal space refinement -- what is commonly called “Refinement Cycles” since the relationship of 
parameters to data is non-linear and is matched through a series of successive approximations).

     The main target is to match the calculated  |F| with that observed.  

     The parameters are  xn  yn  zn  Bn  (and On when needed).  The molecule has a certain number of 
atoms, which sets the number of parameters, but the number of data points increases by the volume of 
reciprocal space that is measured.  So at poorer resolutions there is a problem of numbers of parameters 
vs number of data points.  

     Geometrical target functions can be defined based on “previous knowledge” like bond lengths, bond 
angles, etc.   

     Even at the best (highest) (smallest-value) resolution, there can be regions where the electron density 
is weak and geometrical target functions are needed. 

     Refinement balances fit to data and fit to stereo-chemistry.

Refinement
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Electron Density Maps

Now that we know the φP for each reflection, we can use the Fourier transform formula to get a 
picture of the electron density in the molecule:

For each chosen grid point x,y,z in the repeat-
ing unit of the crystal, the above expression 
must be summed over all the measured reflec-
tions h, k, ℓ.  The top illustration shows part of 
one layer of such a map, where each number is 
the value of the electron density (on an arbi-
trary scale) at that grid point.  Contours have 
been drawn at 10, 20, 30, etc.

The middle illustration shows 7 superimposed 
layers of a part of the 2.5 Å resolution map of 
staphylococcal nuclease . 

In the bottom illustration this same piece of 
map is shown interpreted as two residues of 
backbone in extended chain conformation, 
with arginine and phenylalanine side groups.

ρxyz  =  (Vol)-1 ∑∑∑ |FPhkℓ| eiφPhkℓ e-i 2π( hx + ky + ℓz )
h k ℓ

12 21 31 28 19 6 -3

18 30 47 38 30 19 9

22 39 55 56 40 23 17

32 38 48 54 47 39 24
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18 23 36 48 59 50 33

31 10 25 34 39 37 29
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Example of summing waves of 1 , 2 , 3 , 4  wavelengths across a unit cell, of different amplitudes and 
different relative phases to get different number and positions of reconstructed “atoms”.

1

2

3

4

Sum
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 Stereo views of the electron density for an α-helix in staphylococcal nuclease at (from top 
to bottom) 2, 3, 4, 5,  and 6 Å resolution.  All maps were made using Fobs, the original MIR phases, 
and the same grid spacing.  Viewpoint is the same, and contour levels were adjusted to be approxi-
mately equivalent. 
 
 All carbonyl oxygens are clear at 2 Å, but almost all of them are absent at 3 Å, although side 
chains can still be judged.  At 4 Å, density has begun to coalesce along the helix axis, and there is a 
false connection between side chains at the lower left.

 This and the next two figures are from JS and DC Richardson (1985) “Interpretation of 
Electron Density Maps”  in Methods in Enzymology; HW Wyckoff, CHW Hirs, SN Timasheff, 
eds.; 115: 189-206.
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 Side views of the same helix as on previous page, at 2, 3, and 3.5 Å resolution.  

 At intermediate resolution the density  connects through a hydrogen bond (lower 
right) more strongly than through the nearby helical main chain, although the connectivity 
is correct at both higher and lower resolutions.
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 Stereo views of the electron density for two strands of antiparallel  β-sheet in staphylo-
coccal nuclease at 2, 3, 4, 5, and 6 Å resolution.

 In this case the strands separate correctly at 4 Å but that would not always be true.  At 
5 and 6 Å the density is sheetlike, but with holes in variable locations.   At 6 Å the right-hand 
side extends further out because it is no longer separated from a third strand.
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     Model evaluation and validation considers the same sort of factors used in building and refining the 
model, but uses different tools and often stricter criteria.  Properties based on previous knowledge are 
used in model building and evaluation.

     with respect to data
     with respect to stereochemistry and physics
     All Atom Contact Analysis and the MolProbity website

Kinemages     HowDotsWork.kin
                      1JIRon1S83_Arg66_supr.kin,    1JIR.pdb in MolProbity
Quality indicators:
     Inherently Global:
          Resolution
          Rcryst
          Rfree
     Local in detail and global as averages
          Bond lengths and angles, stereochemistry
          B-factors
          Match to electron density
          Match with previous knowledge
               Rotamers, Ramachandran, C-beta deviation, Suiteness 
               All-atom contact analysis

Quality Evaluation and Validation



2009 Chapter 10,  Quality: pg 2

(s
in

 θ)
/λ

 
0.

00
 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
45

 
0.

50
 

0.
60

 
0.

65

geometry

2θ
 (°

)
 

0.
00

 
8.

84
 

17
.7

4
 

26
.7

4
 

35
.9

2
 

45
.3

4
 

55
.1

0
 

65
.3

2
 

76
.1

5
 

87
.8

7
 1

00
.8

7
 

13
5.

36
 18

0.
00

θ 
(°

)
 

0.
00

 
4.

42
 

8.
87

 
13

.3
7

 
17

.9
6

 
22

.6
7

 
27

.5
5

 
32

.6
6

 
38

.0
8

 
43

.9
3

 
50

.4
3

 
67

.6
8

 9
0.

00

d
 

10
.0

0
 

5.
00

 
3.

33
 

2.
50

 
2.

00
 

1.
67

 
1.

43
 

1.
25

 
1.

11
 

1.
00

 
0.

83
 

0.
77

B
-F

ac
to

rs
 (d

is
o

rd
er

 f
ac

to
rs

) e
xp

re
ss

ed
 a

s 
e-B

(s
in

θ/
λ)

²

(s
in

 θ)
/λ

 
0.

00
 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
45

 
0.

50
 

0.
60

 
0.

65

(s
in

θ/
λ)

²
 

0.
00

00
 0

.0
02

5
 0

.0
10

0
 0

.0
22

5
 0

.0
40

0
 0

.0
62

5
 0

.0
90

0
 0

.1
22

5
 

0.
16

00
 0

.2
02

5
 0

.2
50

0
 

0.
36

00
 0

.4
22

5

B value

1
 0

.9
97

5
 0

.9
90

1
 0

.9
77

8
 0

.9
60

8
 0

.9
39

4
 0

.9
13

9
 0

.8
84

7
 

0.
85

21
 0

.8
16

7
 0

.7
78

8
 

0.
69

77
 0

.6
55

4

10
 0

.9
75

3
 0

.9
04

8
 0

.7
98

5
 0

.6
70

3
 0

.5
35

3
 0

.4
06

6
 0

.2
93

8
 

0.
20

19
 0

.1
32

0
 0

.0
82

1
 

0.
02

73
 0

.0
14

6

20
 0

.9
51

2
 0

.8
18

7
 0

.6
37

6
 0

.4
49

3
 0

.2
86

5
 0

.1
65

3
 0

.0
86

3
 

0.
04

08
 0

.0
17

4
 0

.0
06

7
 

0.
00

07
 0

.0
00

2

30
 0

.9
27

7
 0

.7
40

8
 0

.5
09

2
 0

.3
01

2
 0

.1
53

4
 0

.0
67

2
 0

.0
25

4
 

0.
00

82
 0

.0
02

3
 0

.0
00

6

40
 0

.9
04

8
 0

.6
70

3
 0

.4
06

6
 0

.2
01

9
 0

.0
82

1
 0

.0
27

3
 0

.0
07

4
 

0.
00

17
 0

.0
00

3
 

50
 0

.8
82

5
 0

.6
06

5
 0

.3
24

7
 0

.1
35

3
 0

.0
43

9
 0

.0
11

1
 0

.0
02

2
 

0.
00

03
 

 

10
0

 0
.7

78
8

 0
.3

67
9

 0
.1

05
4

 0
.0

18
3

 0
.0

01
9

 
 

sc
at

te
rin

g 
fa

ct
or

s 
fo

r 
se

le
ct

 a
to

m
s 

as
 a

 fu
nc

tio
n 

of
 θ

 (λ
 =

 1
.5

42
 Å

); 
w

ith
 s

om
e 

an
om

al
ou

s 
te

rm
s

(s
in

 θ)
/λ

 
0.

00
 

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
45

 
0.

50
 

0.
60

 
0.

65

f n

an
o

m
al

o
us

an
o

m
al

o
us

an
o

m
al

o
us

f'
f'

'
f'

f'
'

f'
f'

'

Atom Type

C
6.

00
0

0.
0

0.
0

5.
76

0
5.

12
6

4.
35

8
3.

58
1

2.
97

6
2.

50
2

2.
16

5
1.

95
0

0.
0

0.
0

1.
68

5
1.

53
6

0.
0

0.
0

N
7.

00
0

0.
0

0.
0

6.
78

1
6.

20
3

5.
42

0
4.

60
0

3.
85

6
3.

24
1

2.
76

0
2.

39
7

0.
0

0.
0

1.
94

4
1.

69
8

0.
0

0.
0

O
8.

00
0

0.
0

0.
1

7.
79

6
7.

25
0

6.
48

2
5.

63
4

4.
81

4
4.

09
4

3.
49

2
3.

01
0

0.
0

0.
1

2.
33

8
1.

94
4

0.
0

0.
1

S
16

.0
0

0.
3

0.
6

15
.5

4
14

.3
3

12
.7

5
11

.2
1

9.
93

0
8.

99
0

8.
32

0
7.

83
0

0.
3

0.
6

7.
05

0
6.

31
0

0.
3

0.
6

S
e

34
.0

0
-1

.0
1.

3
33

.2
7

31
.4

3
29

.1
3

26
.9

1
24

.9
5

23
.2

4
21

.7
1

20
.2

8
-1

.0
1.

2
17

.6
3

15
.2

0
-1

.1
-1

.1

H
g

80
.0

0
-5

9
78

.7
2

75
.4

8
71

.3
7

67
.1

4
63

.0
9

59
.3

1
55

.8
4

52
.6

5
-5

8
47

.0
4

42
.3

1
-5

8

D
if

f
r

a
c
ti

o
n

 T
a
b

l
e

B
-F

a
c
to

r
s
 a

n
d

 R
e
s
o

l
u

ti
o

n



2009 Chapter 10,  Quality: pg 3

0
0
.0
5

0
.1

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

0
.4

0
.4
5

0
.5

0
.5
5

0
.6

0
.2
5

0
.5

0
.7
5

1

B=
   

5

B=
 1

0

B=
 3

0

B=
 6

0
B=

10
0

= 
sin

θ/
λ

   
   

   
   

d=
 1

0 
   

   
   

   
   

5 
   

   
   

   
  3

.3
3 

   
   

   
  2

.5
   

   
   

   
  2

.0
   

   
   

   
 1

.6
7 

   
   

   
  1

.4
3 

   
   

   
  1

.2
5 

   
   

   
  1

.1
1 

   
   

   
  1

.0
0 

   
   

   
  r

es
ol

ut
io

n

e-
B

 (s
in

θ 
/ λ

)²

e-B (sinθ / λ)²   vs. sinθ/λ  (resolution)



2009 Chapter 10,  Quality: pg 4

0.0 0.2 0.4 0.6
0

2

4

6

Column 1

C
o
lu

m
n
 2

Untitled Data 1

Column 2

Carbon scattering factor vs. resolution
ele

ct
ro

ns
 w

or
th

d =             5.0           2.5           1.67        1.25         1.00        0.83  Å  
 sinθ/λ



2009 Chapter 10,  Quality: pg 5

0.0 0.2 0.4 0.6
0

20

40

60

80

Column 1

C
o
lu

m
n
 2

Carbonf.pfit

Column 2

Column 3

Column 4

d =             5.0           2.5          1.67       1.25        1.00        0.83  Å  
 sinθ/λ

ele
ct

ro
ns

 w
or

th
Hg, Se, C scattering factor vs. resolution

 Hg

 C

 Se



2009 Appendix:  Equations: pg 1

F = | Fhkℓ | • eiφhkℓ  =  ∑ On • fn,θ • e-Bn (sinθ / λ)² • ei 2π( hxn + kyn + ℓzn )
n

→

λ : wavelength of radiation
d : interplanar spacing, the effective distance associated with a particular diffracted ray
θhkℓ : angle of incident beam to the h, k, ℓ Bragg plane
h, k, ℓ : integer index numbers of  a particular Bragg Plane, a diffracted ray, a “reflection”,
                  index of a point of the reciprocal lattice  “reciprocal space”
| Fhkℓ | : amplitude of the hkℓth diffracted ray
φhkℓ : the phase of the hkℓth diffracted ray
B : B-factor (historically the Temperature Factor, but dominated by other uncertainties)
fn,θhkℓ : individual atomic scattering factor of the nth atom as a function of θhkℓ
xn,yn,zn : coordinates of the nth atom
mhkℓ : figure of merit for phase of the hkℓth diffracted ray
N : total number of atoms in the repeating unit of the crystal
On : occupancy of the nth atom.
Vol : volume of the repeating unit, the unit cell
ρxyz : electron density at coordinates x, y, z in the crystal    “real space”
Pxyz : Patterson function value at coordinates x,y,z : vector distances-between atom positions 

| Fhkℓ | • eiφhkℓ  =  Volume  ∑∑∑ ρxyz
 • ei 2π( hx + ky + ℓz )

of repeat-
ing unit x y z( )

ρxyz  =  (Vol)-1 ∑∑∑ mhkℓ 
 •| Fhkℓ | • eiφhkℓ • e-i 2π( hx + ky + ℓz )

h k ℓ

∞−∞ →

Pxyz  =  (Vol)-2 ∑∑∑ | Fhkℓ |²• e-i 2π( hx + ky + ℓz )
h k ℓ

∞−∞ →

N

nλ = 2dunit cell sin(θ)
λ = 2dh,k,l sin(θh,k,l)

Bragg’s Law

Scalar value of amplitude equals the square root of the intensity (energy) of the wave.
| Fhkℓ | = ( Ihkℓ )½ Ihkℓ = | Fhkℓ |²

“Intensity” has been corrected for polariztion and other consequences of data collection method.
A diffracted ray is the sum of contributions from all atoms.

A diffracted ray is the sum of contributions from all electron density.

Electron density is the Fourier transform of all diffracted rays.

Patterson map is the Fourier transform of the intensities.

Residuals, R-values, assess agreement between datasets. (here model vs experimental)

Rcryst = ∑ | | Fobs|  -  |Fcalc | |
∑ | Fobs |

Rfree   calculated from 
otherwise unused 5%

product of all electron densities separated by the x,y,z vector distance
same shape and dimension unit cell

smallest dh,k,l   is resolution
2 sin(θh,k,l)

dh,k,l 
 = 

 1 
 λ so  

sin(θh,k,l)
λ is a measure of resolution 
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The equations: (Good-Parts version: what you really need to remember)

Bragg’s law (as used to track each individual scattered ray):
                                                                                          

dh,k,l is a particular indexed distance in the crystal, and is the “resolution” of the h,k,l diffracted ray.  The 
smaller the d, the better the resolution, thus the best resolution data is from diffracted rays with the 
largest angles.    The index carries a lot of the “direction” information.

These “d”s are distances between “Bragg Planes”.  Bragg Planes are simply ways of dividing the unit-
cells of the crystal into equally spaced intervals (the “d” spacing).  So Bragg Planes are oriented families 
of parallel planes with a particular separation.  The h,k,l indices, along with the unit cell dimensions and 
shape, define both the orientation and the d-spacing of a particular set of Bragg Planes.
(The unit cell is the basic repeating unit of the crystal: the repeat is done entirely by translations, and the 
unit cells “tile” (completely fill) the volume of the crystal.)

The “θ”  is the angle the ray makes to the Bragg Plane,  and in the defining construction the angle of the 
incident ray is equal to the angle of the diffracted ray, just like a classical reflection, so the diffracted rays 
are often called “reflections”.

nλ = 2d sin(θ)

λ = 2dh,k,l sin(θh,k,l)
  2 sin(θh,k,l)
          λ

 1   
dh,k,l 

 = 

CAVEAT:
When discussing crystallography, many people remember Bragg’s law this way:
                                                        more specifically:

     where λ is the wavelength of the x-rays, d is a dimension of the unit cell of the crystal, and θ is the 
angle of the scattered ray from “Bragg Planes”, and the integer n is the number of wavelengths of path 
difference between a ray scattered from one side of the unit cell and a ray scattered from the opposite 
side of the unit cell.
     The “n” formula brings to mind vibrating string harmonics.  Indeed, we will see how the electron 
density can be thought of as a sum of standing waves in the box of the unit cell.
     This n, the order of the diffraction, is useful for fiber diffraction and is reasonably convenient for 
small molecule crystals with very small unit cells,  BUT can be very confusing when thinking about dif-
fraction from macromolecular crystals.  (For convenience, the examples drawn in text books and lecture 
notes show small unit cells, so drawings with the “n” form seem to make sense.  However, in real life, or 
with general equations, dealing with large unit cells, everything is done in terms of uniquely indexed 
Bragg planes, i.e. uniquely indexed diffraction events.).

nλ = 2dunit cell sin(θ)

Note the reciprocal relationship
                                                                                          
between   dh,k,l and θh,k,l 

d: distance, but direction only implied!Remember this equation!
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The equations: (Good-Parts version: what you really need to remember, cont’d.)

A light wave ray diffracted from a molecule in a crystal:
     A wave is defined by an Amplitude   | Fhkℓ |   and a Phase:     eiφhkℓ 
     Each diffracted “wave” is a sum of contributions from ALL atoms:
         
         ∑ (Amplitude-factors)   (Phase-factor)     ...the sum is over all atoms.

    Amplitude-factors  are a property of the atom, including uncertainty about its position.
    (Uncertainties are put into the B-factor.  Many people think they understand the B-factor because 
they remember hearing about the Temperature Factor from Physics, for macromolecules the tempera-
ture part of the B-factor is only a minor part, most of the effect comes from other kinds of disorder.)

    Phase-factor  is just dependent on the position of the atom.

F = | Fhkℓ | • eiφhkℓ  =  ∑ On • fn,θhkℓ
 • e-Bn (sinθhkℓ/ λ)² • ei 2π( hxn + kyn + ℓzn )

n

→ N

h, k, ℓ : integer index numbers of   a particular Bragg Plane, a diffracted ray, a “reflection”.
θhkℓ : angle of incident beam to the h, k, ℓ Bragg plane
| Fhkℓ | : amplitude of the hkℓth diffracted ray
φhkℓ : the phase of the hkℓth diffracted ray
B : B-factor (historically the Temperature Factor, but dominated by other uncertainties)
fn,θhkℓ : individual atomic scattering factor of the nth atom as a function of θhkℓ
xn,yn,zn : coordinates of the nth atom
N : total number of atoms in the repeating unit of the crystal
On : occupancy of the nth atom. (e.g. for a half-occupied ligand, sidechain alternate rotamer, etc.)

N

n
•

    Amplitude   Phase   =                    (Amplitude-factors)           •             (Phase-factor)  

And now the equation we will derive (and that crystallographers should be familiar with):
Remember this equation for your prelim!
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A diffracted wave is the sum of contributions from all atoms.

F = | Fhkℓ | • eiφhkℓ  =  ∑ On • fn,θhkℓ
 • e-Bn (sinθhkℓ/ λ)² • ei 2π( hxn + kyn + ℓzn )

n

→

Electron density is the Fourier transform of all diffracted waves.

A diffracted wave is the sum of contributions from all electron density.

| Fhkℓ | • eiφhkℓ  =  Volume  ∑∑∑ ρxyz
 • ei 2π( hx + ky + ℓz )

of
 unit cell x y z( )

        ρxyz       =       (Vol)-1 ∑∑∑ mhkℓ 
 •| Fhkℓ | • eiφhkℓ • e-i 2π( hx + ky + ℓz )

h k ℓ

∞−∞ →

N

The equations: (Good-Parts version: segue into a trick...)

The wave equation depends on a model of the structure (i.e. atomic coordinates) ---
but that is the result of the process, the whole problem is that we don’t know any of the coordinates in 
the beginning!   We really want to run that equation backwards and calculate the model from the dif-
fracted waves.  The trick is to cast the equation into the form of a Fourier Transform equation which can 
be reformulated backwards.

So, take this equation:

And recast it in terms of continuous density instead of individual atoms:

And now we can work it backwards:          the  Trick

       Amplitude          =                                   (Amplitude-factors) • (Phase-factors)
(electron density has no phase)          here the x,y,z is the point in the unit cell where we are calculating 
the density, if we do this for the whole unit cell, then we’ll see everything that is possible to see.   

So, can we do it?  What is known about the factors on the right side of the equation?
mhkℓ is the figure of merit for phases, we’ll get that when we figure out the phases.

| Fhkℓ | is the amplitude of the hkℓth diffracted wave, | Fhkℓ | = ( Ihkℓ )½ and Ihkℓ is the Intensity of 
the diffracted wave, which we can measure!

e-i 2π( hx + ky + ℓz ) is easy: we know h,k,l for each wave and the x,y,z of the point being calculated.
eiφhkℓ   is the hooker,  we do NOT know φhkℓ the phase for the hkℓth diffracted wave.

So now we have to do some work -- find ways to recover the phase of each diffracted wave that was lost 
when we measured just the intensity.
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Two kinds of waves:   these last big equations are of a form:  
(Amplitude factor) • (Phase factor)       Which is just the general equation of a wave.   
However, there are two varieties:

1)  | Fhkℓ | • eiφhkℓ     the expression for a real x-ray, with a real, experimentally fixed, wavelength.

     A resultant diffracted x-ray wave from the crystal is the sum of x-ray waves scattered from each and 
every atom in that crystal in a particular direction.  Each resultant wave, indexed as h,k,l , travels out of 
the crystal in that particular direction, so we will need to learn how to combine parallel x-ray waves to 
form a resultant wave.

2)  (amplitude factor)• e-i 2π( hx + ky + ℓz ) some other kind of wave, with wavelengths that turn 
out to be integral fractions of the dimensions of the unit cell.

     The electron density in a model of the crystal is the sum of these second kind of waves.  Not only are 
the wavelengths of these density waves different from each other, each wave is going in its own particular 
direction.   The wavelengths are integral fractions of unit cell dimensions (i.e. 1,2,3,... complete cycles 
within the bounds of the unit cell), thus they are standing waves.  So we will need to learn how to com-
bine standing waves in a box (the unit cell) to build up a density-like image.

     Representing waves, the phase clock (with radius = amplitude):

φ factor (eiφ): exponential form convenient to talk about;  eiφ = cos(φ) + i sin(φ)
cos() & sin() form (real and imaginary components) sometimes more convenient for computation.

im
ag
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real axis
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Show on this diagram why a 5-fold axis is incompatible with a crystal of translation-
ally related Unit cells.
     Explain briefly why.

a

a
a

a
a
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On this diagram of a two dimensional crystal draw a sensible choice for the unit cell.
Explain why your choice is a unit cell.
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This 2-D drawing shows a crystal of squirrels:

     a) MARK at least one of each of the 4 distinctly different squirrel 2-fold axes:  Use different 
symbols for each type axes (i.e. that touch different parts of the squirrels that are related by those 
2-fold axes.).

     b) DRAW a rhombus-shaped unit cell with the MINIMUM amount of squirrel that can be 
translated to completely cover the space.  

     c) DRAW another unit cell, a rectangle, that holds TWICE as much but has right angles at the 
corners.
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Chapter 2,  Phases & Transforms: pg 1
Name:_____________________________

Match Transforms

Match the diffraction patterns in the top row by number to the images on the next row.

(1) (2) (3) (4)

(d)(c)(b)(a)

Discuss a common theme to this pairing.  What principle is being illustrated by the pair 
of crystal images and the pair of Mickey images ?
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Name:_____________________________
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0
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Adding Waves:
Sum the two curves “point-by-point” using the empty graph space below the two. 
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Name:_____________________________

 For X-rays of wavelength A = 1.5 Å, what is the smallest Bragg plane d spacing which could produce a 
diffracted ray? In what direction with respect to the incident beam is this diffracted ray going?  

Make a drawing to show this, including direction of incoming and “reflected” rays. 

What is the longest wavelength of x-rays which will diffract from a crystal 
       with largest Bragg plane d spacing = 100 Å ? 

3-2. Bragg’s Law limits
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Name:_____________________________
3-3Planes-->3Spots
As one rotates the crystal shown below, three of the spots on the film closest to the 
straight-through direction are produced by diffraction from the three indicated sets of 
Bragg planes. Identify them (that is, match the Bragg planes with the spots on the film).
 Explain your assignments including reasons for the relative strengths of the spots and for the 
relative positions of the spots on the film.

} }

{1,0,0

0,1,0 1,1,0

internal structure

experiment:

x-rays

crystal

rotation

film

strong
weak

medium

straight through
direction
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Chapter 4   Ewald Sphere & diffraction: pg 1

Name:_____________________________

Reciprocal Lattice & Diffraction from a protein crystal

         On the next page. a crystal of orthogonal unit cell, 50x50x50 Angstroms, is at the ‘X’ in the 
center of its reciprocal space. The spots representing the ends of diffraction vectors are approximately 
a realistic size, accounting for wavelength spread, source size, crystal size, and the mosaic character 
of a real crystal. A beam of x-rays is shown hitting the crystal, and a circle is drawn that shows the 
location of solutions to the parallelogram constructions (Ewald sphere) for this orientation of x-ray 
beam and crystal. 

a) Show on the film plane where x-rays would hit, that come from all of the Bragg planes that 
are effectively in diffracting condition as shown by this diagram.  (Compass and straight edge 
needed for these constructions.)

b) What is the highest resolution, calculated in Å (i.e. spacing of the closest spaced Bragg planes) 
represented on this slice of reciprocal space, whether or not that plane is actually diffracting at 
this time?  (Mark the reciprocal space spot to identify the one you choose.)
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Name:_____________________________
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Name:_____________________________

For the crystal shown below: 
a) Draw a unit cell.  Actually tiling the area of molecules shown below with your choice of unit 
cell will help think about how to draw the corresponding reciprocal lattice.

        b) Draw the reciprocal lattice out to the 5th spot in each direction, with approximately the correct 
relative spacing.  The origin of reciprocal space does not have to be in the crystal,  in any case, draw 
the reciprocal lattice down below the real-space crystal lattice.  However, it is useful to line up the 
lattices so that directions are correlated. 
c) Circle a spot that is especially strong because of the side-to-side helix packing in this crystal.  
(Draw in the corresponding Bragg Planes in the real space area.)

USE A RULER TO DO YOUR DRAWING:
        SPACING, RELATIVE PROPORTIONS AND ORIENTATION IS IMPORTANT.

Helix-spacing Problem
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Name:_____________________________

1.  The pattern below represents a two-dimensional crystal of a linear three atom molecule (like 
O=C=O). Label clearly, using separate parts of the pattern for each: 
 a) A reasonable unit cell  
b) A set of Bragg planes with the largest possible d spacing.  
c) A set of Bragg planes that would give a very strong diffracted ray.  
d) A set of Bragg planes that would give a relatively weak diffracted ray. 
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Name:_____________________________

Below is a very similar drawing to that of the general case of molecular scattering on pg 3 of chapter 5.
However, here the point P is part of a molecule embedded in a unit cell of a crystal, 
and a special direction of view down the x axis is used to simplify the diagram.

A crystal can only diffract in special directions, so only then can the point P be contributing to a
diffracted ray. 
 

a) Show a set of Bragg planes that determining this diffraction event.   Indicate θ in and θ out.

Draw carefully: the construction should be easy and show obvious answers.
 

b) What are the indices (h, k, ℓ ) of this Bragg plane? 
 

c) For this reflection, approximately what is the phase of the ray from P with respect to a ray of 
phase = 0 from the Origin (O)?  

O

looking
down
x axis
h axis

y axis
k axis

z axis
l axis

P

y

z

a➝

a➝

➝ b 
➝s

➝b

➝r
unit cell
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Name:_____________________________

Patterson Maps

1.      Since your protein has a single free SH group you try soaking the crystals in solu-
tions of mercury compounds.  Data from one of them gives you the simple Patterson 
map shown below.  On the unit cell shown empty, draw in a possible set of heavy-atom 
positions that would satisfy the Patterson map.
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Chapter 6, Patterson: pg 2

Name:_____________________________

Patterson Maps, cont’d

2. Solve the Patterson map shown below;  put one atom at the origin in real space.

If one of the atoms is at the origin, explain why for the 1,0,0 diffracted ray the second 
atom would give a phase of 90°. 

If atom one and atom two are the same, draw a phase-vector diagram describing the 
combined scattering from the two atoms for this 1,0,0 reflection.

x

Patterson
space:

Real
space:



2009
Chapter 7, Phasing, Isomorphous: pg 1

Name:_____________________________

Consider a one dimensional crystal ( or, if you like, call it a double projection onto one axis 
of a 3-D crystal). 
 The unit cell can be described as going from x=0 to x=1. 
 The diffracted spots can be indexed simply in h. 
 So the equation describing the diffraction from atoms is:

The data from crystals of the Native 
and 2 derivatives for 3 reflections are 
given in the table.

Note that data was also taken from a 
crystal with both heavy atom deriva-
tives.  The Patterson Map from that 
showed the relaive positions of the 
heavy atoms in the unit cell.

The Patterson map from derivative 1 had no other feature than the origin peak, nor did 
the map for derivative 2. The double derivative was used to get relative positions. When 
the position of the heavy atom of derivative 1 was taken as the origin, x=0, then the 
heavy atom of derivative 2 was at x=1/3. 

Phase Triangles

Fh = ∑ fn e 
i  2π(hx) = ∑ fn [ cos(2π hxn) + i sin(2π hxn) ]

n=1n=1

NN→

reflection: h = 1 2 3

| FP | obs
 200  200  400

| FPH1 | obs
 150  150  450

| FH1 | calc
 50  50  50

| FPH2 | obs
 230  230  450

| FH2 | calc
 50  50  50

Question: what are the phases of F(1), F(2), and F(3)?
→→ →

cos� +
sin � +

cos� -
sin � +

cos� +
sin � -

cos� -
sin � -

 cos  sin

0, 2π  1  0

π/2  0  1

π  -1  0

3π/2  0  -1

2π/3  -0.5  +0.87120°

| FP | is measured; we must find φP (for each reflection).
| FPH1 | & | FPH2 | are measured; 
| FH1 |, | FH2 | and heavy atom phases can be calculated for each reflection: 

Possibilly useful relationships to help 
position the heavy atom vector on the 
graph paper before drawing the | FP | 
and | FPH | vectors,
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Name:_____________________________

MAD (Multiple wavelength Anomalous Dispersion) experiments often collect data at 3 different 
wavelengths, although collecting anomalous pairs of data at 2 wavelengths is sufficient to determine the 
phase.

Besides just accumulating more data (which always helps if the crystals can stand the additional 
radiation dose), what is the main reason for collecting MAD data at 3 different wavelengths?

(i.e., What camparisons are made among these data sets, and what particular properties are maximized 
by particular comparisons?)

     remember:

       and think about what is special at L1, L2, and L3

Method behind the MADness
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Problem Set 8-b

Reciprocal Lattice & Diffraction from a protein crystal

 A number of very exciting new developments in macromolecular crystallography exploit the 
remarkable features of the synchrotron as an x-ray source. The high flux of radiation giving quicker data 
collection, allowing the use of smaller crystals, and often permitting vastly more data to be collected 
from one crystal is one such feature. Another is the tunable wavelength so that data can be collected 
that, for instance, exactly matches the anomalous scattering resonance of a particular type of atom in 
the molecule. A third point which we will illustrate in this question, is the combination of the high flux 
of photons over a broad range of wavelengths which allows a lot of different data points to be collected 
simultaneously very quickly. If one can trigger an enzymatic reaction in an enzyme-substrate complex, 
then this high speed crystallography will be able to collect data on transient intermediates. 

 On the next page, a crystal of orthogonal unit cell, 50x50x50 Angstroms, is at the ‘X’ in the center 
of its reciprocal space. The spots representing the ends of diffraction vectors are approximately a realistic 
size, accounting for effective source size, crystal size, and the mosaic character of a real crystal. A beam 
of x-rays is shown hitting the crystal, and a circle is drawn for a particular wavelength that shows the 
location of solutions to the parallelogram constructions (Ewald sphere) for this orientation of x-ray beam 
and crystal. The scale here is the “natural” one of a typed page, that is, 12 characters per inch across and 6 
lines per inch down. Thus the n=6 spot is 1 inch from the origin and there are 6/50 = 0.12 Å-l per inch 
in this representation of reciprocal space. 

 To illustrate this efficiency of data collection, consider a range of wavelengths; 
to make this tractable as a pencil and paper construction, make this a rather narrow range: from 1.5 Å to 
2.5 Å.  The circle is drawn at one extreme for a wavelength of 1.5 Å. 

(1/1.5 = 0.67 Å-l which at 0.12 Å-l per inch. makes the radius of the Ewald sphere about 5.5 inches. 

The other extreme of our range is 2.5 Å (that is, 1/2.5 = 0.4 Å or 3.3 inches radius).

a) Counting partial hits as well as spots completely diffracting, how many simultaneous diffracted 
rays are being produced as shown in the plane of the paper? (Note that even with a continuous wave-
length distribution, discrete rays are made.) Show how you counted them, presumably by coloring in all 
spots that are diffracting. 

b) Show the parallelogram construction for two reciprocal lattice points, one diffracting wavelengths 
near 1.5 Å, the other diffracting wavelengths near 2.5 Å, and indicate on the film plane where the dif-
fracted beams would hit.   (Use compass and straight-edge and show all 4 sides of each parallelogram.)
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Problem Set 8-b cont.
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X

Center of Ewald Sphere
λ =  2.5 Å

Center of Ewald Sphere
λ =  1.5 Å
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Resolution & Model-to-Map Fitting

What other information besides the contours of electron density is being used to increase the 
accuracy of the relative atom positions in the model?

Just how accurately do you think the actual coordinates of the relative position of each atom in 
the best fitted model really are - that is, are they accurate to 2.5 Å, or to 0.25 Å, or to 0.025 Å?

The contours shown in the frames below are from a 2.5 Å resolution map. The intersection points 
of the grid in the 1st frame show where the map values were calculated. The contours were drawn 
interpolating and smoothing between points. (On this three dimensional map the space inside 
contours blocks the view of contours behind them, but is transparent to the imbedded model.) The 
model is shown in a best fit position in frame 2, and displaced by 2.5 Å in frame 3. 

The minimum Bragg plane spacing (that is, the furtherest out in recip-
rocal space data is collected) is a good measure of the effective reso-
lution.  Resolution is just the minimum distance between peaks where 
one can tell that there really are two peaks.  One needs to calculate 
the map on a grid with closer intervals between points than the reso-
lution distance in order to see a dip between two peaks separated by 
the resolution distance.
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Exercise on crystallographic resolution, in trypsin electron density maps 
   Files needed for this exercise: 1HJ8_1.0A.kin, 1C9P_2.8A.kin, downloaded from the BCH 291 web page
***1HJ8 TRYPSIN AT 1.0A RESOLUTION ***
     Take your browser to http://kinemage.biochem.duke.edu and click MolProbity in the navigation bar.  
[If you don’t have Java, follow the directions to get it.]
     Set the “browse” file type to “kinemage”, browse to find the 1HJ8_1.0A.kin, and upload it. 
Continue.  Set the “fetch” file type to “2Fo-Fc (EDS)” and the pdbID to 1HJ8, and fetch it (takes ~15 sec).  
Back on the MolProbity main page, expand the kinemage entry in the file list and ask to view your kin in 
KiNG.
     Choose “beta” on the Views menu.  You should see several vertical beta strands, with Val 52 at the center 
(click on an atom, to see its identity on the info line at the bottom of the graphics window).  Drag right from 
“Structural biology” on the Tools menu, and release on “electron density map”.  Choose your 2Fo-Fc map, and 
OK its format.  Be patient for it to load - it’s very big.  Move the contour window off to the side, and turn on 
both 1.2 (gray) and 3.0 sigma (purple) contour levels.  You should be able to see clear density for all the non-H 
atoms.  Note that the Val 52 sidechain is in a staggered orientation relative to its backbone.
     Turn off the gray contours and move or click the slider for the purple contours up to 8.0 sigma, where the 
difference in x-ray scattering power between different atom types becomes evident.  Click on some of the atoms 
with the largest peaks: what element type are they? _____  Most but not all of the C atoms have disappeared 
at this contour level.  What element type here has intermediate size peaks (and thus intermediate scattering 
power)? _____
     Not all atoms of a given type show up equally strongly, because they are not all equally well ordered.  
Click on several Calpha atoms (where the sidechain joins the backbone) that do show small purple density 
peaks; what are their B-factors (given on the info line, along with their identity)? 
_____ , _____ , _____ .  
Pick several Calphas without peaks; what are their B-factors? _____ , _____, _____ .  
     Choose the “helix” view.  Almost no peaks are visible at 8 sigma, but if you shift to 5 sigma most backbone 
atoms show, and at 4 sigma most sidechain atoms.  This helix is at the C-terminal chain end and has somewhat 
higher B’s.  Right-click on the double ring of the Trp sidechain to center there, and turn on the gray 1.2 sigma 
contour.  Is there a hole thru both 5-membered and 6-membered rings? ______  Zoom out (right-drag up), 
center near the chain end, and notice that the end is disordered enough for even the gray contour to disappear.
     Look at the views for the Ser-His-Asp catalytic triad, benzamidine inhibitor, and Arg 66, which are all ex-
tremely clear and well-ordered.  In the SS 42-59 view, note that the S atoms have even bigger peaks than oxy-
gens.  Radiation damage has oxidized and opened the disulfide bond in some fraction of the molecules.  Click 
on the S atom of the open form; what is its occupancy? ______ 
The 2 conformations of that S atom are quite distinct, not just a smear.  
     Choose the “Gln 192” view.  The backbone CO has two widely separated alternate conformations, one H-
bonded to an SO4 (pink).  The Gln Calpha and Cbeta densities are smeared between two close alternates, and 
beyond that the density essentially disappears (lower contour level doesn’t help very much).  What is the occu-
pancy and B-factor for one of the Cg atoms? occ:______ , B:______ ; 
for one of the terminal N or O atoms? occ:______ , B:______  
When an atom is not visible at all in the electron density, some crystallographers omit it from the model, some 
set its occupancy to zero, and some let its B refine very high.  Note that the information content is much worse 
for this sidechain with high B (or low occupancy in each of probably many conformations) at atomic resolution 
than for the well-ordered parts of a much lower-resolution structure like the one below.
     Choose the “neighbor e.d.” view, which is part of a neighboring molecule in the crystal with no model shown 
in this kinemage.  What is the amino-acid type of the residue at center? _______  Are  the 5 atoms in its ring 
planar or puckered? ___________
     Keep in mind that initial maps seldom look this good;  the phases and the density quality both improve dur-
ing refinement.
     Close the KiNG window.
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Exercise on crystallographic resolution, in trypsin electron density maps (cont’d)

*** 1C9P TRYPSIN AT 2.8A RESOLUTION ***

     Repeat the above procedure to upload the 1C9P kin file and fetch its 2Fo-Fc map from the EDS. 
Open the kin file from the kin list on the MolProbity main page, for viewing in KiNG, and go to the “beta” 
view.  Click on some backbone atoms; what is the best (lowest) B-factor you find for one? ______       How 
does that compare with the B-values you found for similar atoms in the high-resolution structure? _______  
Open the 2Fo-Fc map, and drag slowly back&forth to judge the density shape of the Val 52 sidechain in 3D.  
Is it concave left, concave right, or symmetrical? ___________________
Center on the Ile sidechain to the right of the Val, and drag left to view it from the side.  Does the density 
show which branch is the longer one with the extra Cdelta atom? ______  
     Choose the “helix” view.  Drag back&forth gently to see the spiral shape of the backbone density and the 
small bumps for the backbone O atoms.  Center on the Trp sidechain.  Is there a hole in either ring? ______  
Would you know from the density that this was a Trp? ______
     Choose the “His end” view to see the ring cross section.  Could it be plausibly turned 90 degrees to sit 
crosswise in the density? ______  ; turned by 15 degrees? ______  Note the nearby Asp; the His orientation 
is fine-tuned by its hydrogen bonds, in the absence of higher resolution.
     Look at the other views.  Note that the disulfide S atoms are not resolved into separate peaks, altho their 
positions are clear.  Click on one, then the other, S: what is their distance? ______A. 
For Gln 192, note that it has quite reasonable density in this structure, presumably because it interacts with 
the BPTI inhibitor molecule.
     Close the KiNG window and log out of MolProbity.
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Model quality, validation exercise.

     You will need a web link to MolProbity (with Java), and the file 1JIRon1S83_Arg66_supr.kin download-
ed from the kinemage.biochem.duke.edu  BCH291 web site.
 
Part 1:  MolProbity

    Go to the MolProbity web service (at http://kinemage.biochem.duke.edu, click MolProbity on the navi-
gation bar) and fetch PDB file 1JIR (not case sensitive).  Check that you got a trypsin at 2.0Å resolution.  
What is the R value? ______%;  the Rfree? ______%  That is very good for 2Å, presumably because of in-
formation from previous structures at higher resolution.  Continue to the main page, ask to add hydrogens, 
and run with the default settings.  
The resulting chart shows no His flips but 10 amide flips;  the largest score differences are for Asn ______ 
and Gln ______ .  

     Pick “View in KiNG” for 1jirH-flipnq.kin, and animate between the two orientations for some of the 
views marked * for flips.  Gln 30 has no clashes in the unfavored (pink) position, but in the clearly better 
flipped version (green) it makes ______ H-bonds.  
Asn 48 makes a pseudo-turn H-bond to the backbone ______ atom of residue ______, but in the incor-
rect original position the NH2 has really dire clashes (not evident, of course, if the crystallographer had not 
added those H atoms).  
Gln 64 is similar, but the clashes or H-bond are to the sidechain of ______ ______.  
Close the KiNG window, and “regenerate H”, accepting the flips; continue.

     On the main page, chose “Analyze all-atom contacts and geometry”, and run with the defaults.  While 
waiting, you can preview the Ramachandran kin or pdf, seeing that this structure has excellent phi,psi values 
with no outliers.  The summary statistics are also good, almost all evaluated as green; the clashscore of 7.94 
is at the ______ percentile for this resolution.  But good average scores do not protect against local errors.  
Click on “Multi-criterion chart”  for per-residue scores.  Click on “Rotamer” to sort by increasing rotamer 
quality.  The worst rotamer is for Arg 66 (0% of the high-quality data is this bad, giving a a score of 0%);  
note that it also has a serious clash, with an overlap of ______Å.  Sort on “clashes”, to see that no other 
sidechain has both a bad rotamer and a bad clash.

     Close the chart window, and view the multi-criterion kinemage in KiNG.  On a backdrop of the Calpha 
trace and the non-water “het” groups (in pink, or gray balls for metals), this kinemage shows bad sidechain 
rotamers in gold and serious clashes as clumps of hotpink spikes.  Find the gold sidechain for Arg 66;  how 
many clash clumps does it have? ______  [Before flipping Gln 64, there would have been more.]  Center on 
the Arg, zoom in, and turn on sidechains.  The planar Arg guanidinium is stacked between the sidechains of 
residues ______ ______ and ______ ______.  We will study Arg 66 further in the next part.
 
    Close the KiNG window and continue to the main page.  In the file list, click on the triangles to expand 
the outline, to see all the viewable or downloadable file you have accumulated.  This time you will look at 
a further modified version of the multi-kin, so logout of MolProbity now: “logout” on left side panel, then 
click “Destroy all my files and log out”  to clear your workspace on the server.
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Chapter 10, Quality, Validation: pg 2Model quality, validation exercise (cont’d).

    Part 2: local comparison of 2Å and 1.25Å structures.

    One of the few problems with the 1JIR bovine trypsin structure at 2Å resolution is Arg 66, with seri-
ous clashes and a very bad rotamer although it fits quite acceptably in the electron density.  Rotamer and 
all-atom contact criteria were used to refit Arg 66, with the Asn 64 flip corrected and the Arg guanidinium 
group flipped over in its density to make two good H-bonds.  To test the validity of that correction, we will 
coompare with a more recent porcine trypsin structure at 1.25Å resolution.  

     Open the 1JIRon1S83_Arg66_supr.kin kinemage in either Mage or KiNG (or upload the file in Mol-
probity: browse then set file type to kin and hit upload.)
     Note the green Ser-His-Asp sidechains of the trypsin active site.  Go to the “Arg66” view, which shows 
the original 2Å 1JIR model (gold) in its 2.0Å density, and its all-atom contacts, with several bad clashes (red 
spikes) [with the starting button selection with “*1JIRa”].
Animate to “*refit Arg 66”, the model refit by adding additional steric and dihedral constraints (orange 
bonds).  It is an excellent rotamer; are all the clashes gone? ______  
Now animate  to “*1S83Ha”, the actual 1S83 model refined at 1.25Å (cyan).  Are the 1S83 atoms cleanly 
centered in their atomic-resolution density peaks? ______
All 5 guanidium NH’s make H-bonds, 2 to Gln 64 Oe1, one to a water, and the other two to __________.
  
Turn off the “Arg dots” and the “1jir map” buttons; 
turn on the “*refit Arg 66” button as well as the “*1S83Ha” button.   Stay on or re-choose View Arg 66.
Click on pairs of equivalent atoms in these two Arg sidechain models  to find their separation (reported on 
the info line at the bottom of the graphics window);  what is the largest difference (C,N atoms)? ______Å
Turn off the “*refit Arg 66” and turn on the original  “*1JIRa”.  Is the original model clearly wrong? ______
What is the distance between its cd atom and the 1S83 cd? ______Å.   
What is the largest distance between two equivalent (same name C,N) atoms? _____Å for the ____ atom.

Protein structures always need to use extra information in the form of bond lengths and bond angles 
(known from high-resolution small-molecule crystal structures and from quantum calculations);  at medium 
to low resolution we have seen that accuracy can be improved by also adding in knowledge about dihedral-
angle preferences and all-atom sterics.

      Go to the “Gln 64” view with only the original 1JIR model on; is the N or the O near Arg 66? ______
For 1JIR, Gln 64 was flagged by MolProbity as needing an amide flip for steric and H-bonding reasons.  
Switch to the 1S83 model; is the N or the O near Arg 66? ______.
At this resolution, does one branch have clearly higher electron density? ______;  which? ______.
The 2Å model seemed well centered in the 2Å map, but that model was displaced slightly from the position 
of the well-fit 1.25Å model.  Note that the phases for the maps come from the model and this model bias 
tends to make the map fit whatever is the model!
      
      Arg 66 and Gln 64 were incorrectly fit and refined into the wrong local-minimum conformation.  Look 
at the 3 views (Trp 141, Phe 82, Asn 34) with the 1S83 map and both 1JIR and 1S83 models on, to com-
pare the basic accuracy of these correctly-fit sidechains at 2Å resolution.  Which of the 3 sidechains matches 
the atomic-resolution map and model almost perfectly? ______  Which one deviates the most? ______, by 
what maximum atom separation? ______Å for the ______ atom.  
     So, at 2Å resolution, in a model that fits well into its electron density with good stereo-chemistry, would 
you judge that a typical atom is known to an accuracy of about 2Å, 1Å, 0.2Å, or 0.1Å? ______Å   However, 
you have seen that a few atoms may be displaced by very large amounts:  2-3Å if a group is flipped over 
(and even 5-10Å occasionally, if the local density is very poor).
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